Math, asked by Drowin, 1 year ago

If Angle DAC = 30degree Find the angles of triangle ABC ​

Attachments:

Answers

Answered by antonyvinod
2

Answer:

Step-by-step explanation:

< A = 40+30 = 70 degrees

< B = 90-40 = 50 degrees ( < PBC = 90 because P||Q and given, <C =90 , BC is transversal )

<C = 180 - 70-50 (sum of angles in a triangle = 180)

< C = 60

Answered by StarrySoul
12

\mathfrak{\huge{\underline{Answer:}}}

\textbf{\underline{\underline{In\:Triangle\: ADC }}}

\angle\:A = 30^{\circ}

\angle\:D = 90^{\circ}

[Sum of All angles of Triangle =  180^{\circ} ]

\implies\: \angle\: A + \angle\: B + \angle C = {180}^{\circ}

\implies\: {30}^{\circ} + {90}^{\circ} + \angle\: C = {180}^{\circ}

\implies\: {120}^{\circ} + \angle\: C = {180}^{\circ}

\implies \: \angle\:C = 180^{\circ} - 120^{\circ}

\implies\: \angle\:C = 60^{\circ}

\textbf{\underline{\underline{In\:Triangle\: ABD}}}

 \angle\:A = {40}^{\circ}

 \angle\:D = {90}^{\circ}

\textbf{\underline{\underline{In\:Triangle\: ABD}}}

[Sum of All angles of Triangle =  180^{\circ} ]

\implies\: \angle\:A + \angle\:B + \angle\:D = {180}^{\circ}

\implies\: {40}^{\circ} + \angle\:B + {90}^{\circ} = \:{180}^{\circ}

\implies\:{130}^{\circ}+ \angle\:B =\: {180}^{\circ}

\implies\: \angle\:B = \: {180}^{\circ}  - {130}^{\circ}

\implies\: \angle\:B ={50}^{\circ}

\textbf{\underline{\underline{In\:Triangle\: ABC}}}

\angle\:A = {40}^{\circ} + {30}^{\circ} =\: 70^{\circ}

\angle\:B = {50}^{\circ}

\angle\:C = {60}^{\circ}

Similar questions