If angles of a quadrilateral are (x-15) , x , (x+20) and (2x+5) then find greatest and
smallest angle of quadrilateral?
Answers
Answered by
0
Sum of angles of a quadrilateral is 360°.
Therefore,
x-15+x+x+20+2x+5= 360
5x+ 10= 360
5x=360-10
5x=250
x= 70
Smallest angle= x-15 = 70-15= 55°
Greatest angle= 2x+5= 2*70+5= 145°
Therefore,
x-15+x+x+20+2x+5= 360
5x+ 10= 360
5x=360-10
5x=250
x= 70
Smallest angle= x-15 = 70-15= 55°
Greatest angle= 2x+5= 2*70+5= 145°
Similar questions