Math, asked by vanshika081, 5 months ago

If angles of a triangle are in the ratio 1:2:3, find out the greatest angle​

Answers

Answered by ayushchoudhary2708
1

Answer:

Let angles be x, 2x, 3x

So, by angle sum property of triangle

x+2x+3x=180°

6x=180°

x=30°

Largest angle 3x = 3×30°= 90°

Answered by vanshikavikal448
32

 \huge \bold \color{green}༆ \mathfrak \red{required \: answer}༆

 \bold \color{blue}{ \underline{ \underline \orange{given}}} \orange→

ratio of angles of a traingle us 1:2:3

 \bold \color{blue}{ \underline{ \underline \orange{answer}}} \orange→

90°

 \bold \color{blue}{ \underline{ \underline \orange{solution}}} \orange→

since ratio of angles is 1:2:3,

let angles of a triangle are 1x , 2x and 3x

 \bold { \underline{ \underline{concept}}}→

sum of angles of a triangle is 180°

 \implies \: 1x + 2x + 3x = 180 \\  \implies \: 6x = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \implies \: x = 30  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now substitute the value of x in angles..

angles of triangle are;

1 \times 30 = 30 \degree \\  \\ 2 \times 30 = 60 \degree \\  \\ 3 \times 30  = 90 \degree

here 30° < 60° < 90°

so angle of 90° is greatest angle of triangle..

 \bold { \underline{ \underline \purple{for \: more \: information}}} \purple→

  • perimeter of ∆ = sum of sides of ∆
  • area of ∆ = 1/2 × base × hight

by heron's formula..area of ∆ ;

 =  \sqrt{s( s - a)(s - b)(s - c)}  \\ \\  where \: s =  \frac{a  + b + c}{2}  \\

  • hypotenuse is the greatest side of a right angle triangle
  • sum of angles of a triangle is 180°
  • angles opposite to equal sides are equal in a ∆
  • sides opposite to equal angles are equal in a ∆
  • exterior angle of a ∆ is equal to sum of two opposite sides of a ∆

Similar questions