Math, asked by biman09876543210, 1 day ago

If antilog 0.2991 = 1.991
then log 199.1 = ?
¡) 0.2991
¡¡) 1.2991
¡¡¡) 2.2991
¡v) 3.2991​

Answers

Answered by jayshrisingh183
8

Answer:

log 199.1=2.2991

i.e. (iii) option is correct

Step:

antilog(0.2991)=1.991

∴log(1.991)=0.2991

log199.1=log(1.991×100)

             =log(1.991)+log(10²)…(loga+logb=log(ab))

             =log(1.991)+2log(10)…(nlogab=logabn)

As we know, loga(a)=1

log1.991=0.2991+2=2.2991

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Given that

\rm \: antilog(0.2991) = 1.991 \\

\rm\implies \:log(1.991) = 0.2991 \\

Now, Consider

\rm \: log(199.1) \\

can be rewritten as

\rm \:  =  \: log(1.991 \times 100) \\

We know,

\boxed{ \rm{ \:log(xy) = logx + logy \: }} \\

So, using this result, we get

\rm \:  =  \: log(1.991) + log(100) \\

\rm \:  =  \: 0.2991 + log( {10}^{2} ) \\

\rm \:  =  \: 0.2991 + 2log(10) \\

\rm \:  =  \: 0.2991 + 2 \times 1 \\

\rm \:  =  \: 0.2991 + 2 \\

\rm \:  =  \: 2.2991 \\

Hence,

 \red{\rm\implies \:\rm \:log(199.1)  =  \: 2.2991} \\

So, option (iii) is correct.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ log_{x}(x)  = 1}\\ \\ \bigstar \: \bf{ log_{x}( {x}^{y} )  = y}\\ \\ \bigstar \: \bf{ log_{ {x}^{z} }( {x}^{w} )  = \dfrac{w}{z} }\\ \\ \bigstar \: \bf{ log_{a}(b)  = \dfrac{logb}{loga} }\\ \\ \bigstar \: \bf{ {e}^{logx}  = x}\\ \\ \bigstar \: \bf{ {e}^{ylogx}  =  {x}^{y}}\\ \\ \bigstar \: \bf{log1 = 0}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions