Physics, asked by pancholimayadevi123, 8 months ago

If anyone knows this answer please reply me​

Attachments:

Answers

Answered by shadowsabers03
5

The \sf{j5\ \Omega} inductor of and the rightmost \sf{-j2\ \Omega} capacitor are in series, so their equivalent impedance,

\sf{=j5\ \Omega-j2\ \Omega}

\sf{=j3\,\Omega}

This combination is in parallel with the other \sf{-j2\ \Omega} capacitor. So their equivalent impedance,

\sf{=\dfrac{j3\ \Omega\times-j2\ \Omega}{j3\ \Omega-j2\ \Omega}}

\sf{=\dfrac{6}{j}\ \Omega}

\sf{=\dfrac{j6}{-1}\ \Omega\quad\left[\because\ j^2=-1\right]}

\sf{=-j6\ \Omega}

This combination is in series with the \sf{4\ \Omega} resistor.

So the equivalent impedance of the circuit is,

\sf{\longrightarrow\underline{\underline{Z=(4-j6)\ \Omega}}}

\sf{\longrightarrow Z=\sqrt{4^2+(-6)^2}\angle\tan^{-1}\left(\dfrac{-6}{4}\right)\ \Omega}

\sf{\longrightarrow Z=2\sqrt{13}\angle-\tan^{-1}\left(\dfrac{3}{2}\right)\ \Omega}

\sf{\longrightarrow\underline{\underline{Z=7.211\angle-56.31^o\ \Omega}}}

And the power factor,

\sf{\longrightarrow PF=\cos\left(-\tan^{-1}\left(\dfrac{3}{2}\right)\right)}

\sf{\longrightarrow PF=\dfrac{2}{2\sqrt{13}}}

\sf{\longrightarrow\underline{\underline{PF=0.277}}}

Similar questions