If anyone will do it for me I will be very greatful to him/her
Answers
Answer:
Q4. Verify that: -(-x) = x for.
(i) x = 11/15
(ii) x = -13/17
Solution:
(i) x = 11/15
We have, x = 11/15
The additive inverse of x is – x (as x + (-x) = 0)
Then, the additive inverse of 11/15 is – 11/15 (as 11/15 + (-11/15) = 0)
The same equality 11/15 + (-11/15) = 0, shows that the additive inverse of -11/15 is 11/15.
Or, – (-11/15) = 11/15
i.e., -(-x) = x
(ii) -13/17
We have, x = -13/17
The additive inverse of x is – x (as x + (-x) = 0)
Then, the additive inverse of -13/17 is 13/17 (as 11/15 + (-11/15) = 0)
The same equality (-13/17 + 13/17) = 0, shows that the additive inverse of 13/17 is -13/17.
Or, – (13/17) = -13/17,
i.e., -(-x) = x
Q5. 3⅓ = 10/3
00.3 = 3/10
[Multiplicative inverse ⟹ product should be 1]
According to the question,
3/10 × 10/3 = 1
Therefore, 0.3 is the multiplicative inverse of3⅓.
Step-by-step explanation: