Math, asked by anuragrastogi4537, 9 months ago

If apha and beta are zeroes of x2 -4x+1 then 1/alpha+1/beta -alpha beta is

Answers

Answered by Sharad001
176

Question :-

  \sf{if \:  \alpha \: and \: \beta \: are \: the \: zeros \: of \: } \\   \sf{ {x}^{2}  - 4x + 1 = 0 \: then \: find \:} \\   \frac{1}{ \alpha}  +  \frac{1}{ \beta}  -  \alpha \beta \:

Answer :-

\to \:  \boxed{ \frac{1}{ \alpha}  +  \frac{1}{ \beta}  -  \alpha \beta \:  = 3} \:

Explanation :-

We have a quadratic polynomial

→ x² - 4x + 1 = 0

  \star \sf{ \:  \: sum \: of \: zeros =  \frac{ - coefficient\:of\:x}{coefficient\:of\:{x}^{2}} } \\    \:  \:  \:  \:   \boxed{\alpha +  \beta = 4} \\  \\  \star \sf{  \: product \: of \: zeros =  \frac{Constant}{coefficient\:of\:{x}^{2}} } \\  \:  \:  \boxed{ \alpha \beta = 1}

now ,we have

 \implies \:  \: \frac{1}{ \alpha}  +  \frac{1}{ \beta}  -  \alpha \beta \:  \:  \\  \\  \implies \:  \:   \frac{ \alpha  +  \beta}{ \alpha \beta}  -  \alpha \beta \\  \\  \implies \:  \frac{4}{1}  - 1 \\  \\  \implies \: 3 \\  \therefore \\ \to \:  \boxed{ \frac{1}{ \alpha}  +  \frac{1}{ \beta}  -  \alpha \beta \:  = 3}

Answered by Saby123
9

 \tt{\huge{\orange {Hello!!! }}} S.D

QUESTION :

If apha and beta are zeroes of x2 -4x+1 then 1/alpha+1/beta -alpha beta is......

SOLUTION :

 f(x) = X^2 - 4 X + 1 \\ \\ </p><p></p><p>{ \alpha } + { \beta } = \dfrac{-b}{a} = 4 \\ \\ </p><p></p><p>{\apha}  {\beta} = \dfrac{c}{a} = 1

 \dfrac{1}{ \alpha} + \dfrac{1}{ \beta} = \dfrac{ { \alpha } + { \beta }  }{ {\apha}  {\beta} } = 4</p><p> [/ tex]</p><p></p><p>Hence : </p><p></p><p>[tex] \dfrac{1}{ \alpha} + \dfrac{1}{ \beta} - {\apha}  {\beta} = 4 - 1 = 3

Hence the answer is 3.

Similar questions