Math, asked by kunarasimharao, 10 months ago

if aphla and beat are the zeros of the quadratic polynomial f(x)=x2-1 find quadratic polynomial whose zeros are 2aphla /beat and 2beat /aphla​

Answers

Answered by Blaezii
9

The required polynomial is \bf  x^2+4x+4

Accurate Question :

If α and β are zeroes of polynomial \bf f(x)=x^2-1 ,Find a quadratic polynomial whose zeroes are \bf \dfrac{2 \alpha}{ \beta}\;and\;\dfrac{2 \beta}{ \alpha}

Solution :

Given :

α and β are zeroes of the polynomial \bf f(x)=x^2-1

  • First Compare \bf f(x)= x^2-1 \;with\;\;ax^2+bx+c

So,

  • a = 1
  • b = 0
  • c = - 1

\rule{300}{1.5}

1)

\implies \sf \alpha+\beta\\ \\ \\\implies \sf \dfrac{-b}{a}\\ \\ \\ \implies \sf \dfrac{0}{1}\\ \\ \\ \implies \sf 0\qquad[Eq\;1]

2)

\implies \sf \alpha\beta\\ \\ \\ \implies \sf \dfrac{c}{a}\\ \\ \\ \implies \sf \dfrac{-1}{1}\\ \\ \\ \implies \sf -1\qquad[Eq\;2]

3)

\implies \sf \dfrac{2\alpha}{\beta}+\frac{2\beta}{\alpha}\\ \\ \\\implies \sf \dfrac{2(\alpha^{2}+\beta^{2})}{\alpha\beta}\\ \\ \\\implies \sf \dfrac{2[(\alpha+\beta)^{2}-2\alpha\beta]}{\alpha\beta}\\ \\ \\\implies \sf \dfrac{2[0-2(-1)]}{(-1)}\\ \\ \\\implies \sf \dfrac{4}{(-1)}\\ \\ \\ \implies \sf -4\qquad[Eq\;3]

4)

\implies \sf \left(\dfrac{2\alpha}{\beta}\right)\left(\dfrac{2\beta}{\alpha}\right)\\ \\ \\\implies \sf 4\qquad[Eq\;4]

\rule{300}{1.5}

The quadratic polynomial :

\implies \sf k\bigg[x^{2}-\bigg(\dfrac{2\alpha}{\beta}+\dfrac{2\beta}{\alpha}\bigg)+\bigg(\dfrac{2\alpha}{\beta}\bigg)\bigg(\dfrac{2\beta}{\alpha}\bigg)\bigg] \\ \\ \\\textbf{\bigg[Where k is a constant.\bigg] }\\ \\ \\ \implies \sf k[x^{2}-(-4)x+4\\ \\ \\\implies \sf k(x^{2}+4x+4)

So,

We can put any value of k,

So, k = 1

Therefore, The required polynomial is \bf  x^2+4x+4

Similar questions