Math, asked by abhinavvasudevan, 2 months ago

if aplha,beta are the zeros of the polynomial p(x) = x^2+x+1,then 1/alpha + 1/beta is​

Answers

Answered by SparklingBoy
21

\large \bf \clubs \:  Given  :-

  • α and β are the zeros polymomial

p(x) = x² + x + 1.

-----------------------

\large \bf \clubs \:   To  \: Find :-

Value of  \sf\dfrac{1}{\alpha}+\dfrac{1}{\beta}

-----------------------

\large \bf \clubs \:   Main \:  Formula :-

Relationship between Zeros and coefficiants of a Quadratic Polynomial :

For a qudratic polynomial of the Form ax² + bx + c

  • Sum of Zeros = \sf-\dfrac{b}{a}

  • Product of Zeros = \sf\dfrac{c}{a}

-----------------------

\large \bf \clubs \:   Solution  :-

We Have ,

α and β are the zeros polymomial

p(x) = x² + x + 1.

Hence ,

\large \pmb{ \alpha  +  \beta  = - 1 }  \:  \:  \:----(1) \:  \\  \\  \large\pmb{ \alpha  \beta  = 1} \:  \:  \:---- (2)

Now,

\large \dfrac{1}{ \alpha }  +  \frac{1}{ \beta } \\  \\ \large \sf  =  \frac{ \beta   + \alpha }{ \alpha  \beta }  \\  \\ \bf \:  \:  \:  \:  \{using \: (1) \: and \: (2) \} \\  \\ \large\sf  =  \frac{ - 1}{1}  \\  \\  =  -1 \\  \\ \purple{ \Large :\longmapsto  \underline { \pmb{\boxed{{  \frac{1}{ \alpha } +  \frac{1}{ \beta } =  - 1  } }}}}

 \Large\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \LARGE \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

Answered by studylover001
45

Answer:

Given :

  • p(x) = x² + x + 1
  • α and β are zeros of p(x)

Solution

x² + x + 1

Here :-

  • a = 1
  • b = 1
  • c = 1

Sum of zeroes : α + β = (-b/a)

  • α + β = ( -1/1)
  • α + β = ( -1 )

Product of zeroes : α x β = c/a

  • α x β = (1/1)
  • α x β = 1

To find :

  • 1/α + 1/β

Answer :

  • 1/α + 1/β
  • ( β + α ) / αβ
  • (-1)/1
  • (-1)

Answer = (-1)

Hope it helps you :)

Similar questions