Math, asked by farzanusmani71071, 1 month ago

If arc BD is two times the arc AC,find

Answers

Answered by Anonymous
0

Step-by-step explanation:

To Prove :-

 \sf \dfrac{cot\theta + cosec\theta - 1}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta}

Proof:-

  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\sf: \implies L.H.S

\:  \:  \:  \:   \:  \:  \: \pink{ \:  \: \::\implies \sf \dfrac{cot\theta + cosec\theta - 1}{cot\theta - cosec\theta + 1}}\\

 \:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies \sf \dfrac{cot\theta + cosec\theta - \big(cosec^2\theta - cot^2\theta\big)}{cot\theta - cosec\theta + 1}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies  \sf \dfrac{cot\theta + cosec\theta - \big(cosec\theta + cot\theta\big)\big(cosec\theta - cot\theta\big)}{cot\theta - cosec\theta + 1}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies \sf \dfrac{cot\theta + cosec\theta\Big[1 - \big(cosec\theta - cot\theta\big)\Big]}{cot\theta - cosec\theta + 1}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies  \sf \dfrac{cot\theta + cosec\theta\Big[1 - cosec\theta + cot\theta\Big]}{1 - cosec\theta + cot\theta}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies  \sf cot\theta + cosec\theta\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies  \sf \dfrac{cos\theta}{sin\theta} + \dfrac{1}{sin\theta}\\

\:  \:  \:  \:   \:  \:  \:  \: \pink{ \: \::\implies \sf \dfrac{1 +cos\theta}{sin\theta}}\\

  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\sf: \implies R.H.S

Similar questions