Math, asked by gyanwithin, 11 months ago

If arcsin[2a/(1+a^2)] + arccos[(1 - a^2)/(1 + a^2)] = arctan(2x/(1-x^2)) where a, x ∈ (0,1), then the value of x is__?​

Answers

Answered by Swarup1998
2

Inverse Trigonometric Functions

Formulae:

\quad\mathsf{2tan^{-1}x=sin^{-1}\left(\frac{2x}{1-x^{2}}\right)}

\quad\quad\quad\mathsf{=tan^{-1}\left(\frac{2x}{1-x^{2}}\right)}

\quad\quad\quad\mathsf{=cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)}

To find: Value of \mathsf{x} is ___ .

Solution:

\therefore \mathsf{sin^{-1}\left[\frac{2a}{1+a^{2}}\right]+cos^{-1}\left[\frac{1-a^{2}}{1+a^{2}}\right]=tan^{-1}\left[\frac{2x}{1-x^{2}}\right]}

\Rightarrow \mathsf{2tan^{-1}a+2tan^{-1}a=2tan^{-1}x}

\Rightarrow \mathsf{2tan^{-1}a=tan^{-1}x}

\Rightarrow \mathsf{tan^{-1}x=2tan^{-1}a}

\Rightarrow \mathsf{tan^{-1}x=tan^{-1}\left[\frac{2a}{1-a^{2}}\right]}

\Rightarrow \color{blue}{\mathsf{x=\frac{2a}{1-a^{2}}}}

Answer: \color{blue}{\bold{x=\frac{2a}{1-a^{2}}}}

Note: The problems of 'Inverse Trigonometric Functions' can be solved easily if the formulae are known to you. However if is is difficult in conversions, consider \mathsf{x=r\:cos\theta} or \mathsf{r\:sin\theta}, etc.

Similar questions