If αα,ββ are roots of 3x2−5x+7=03x2−5x+7=0 then α2α2+β2β2=
Answers
Answered by
2
Answer:
Step-by-step explanation:
Given quadratic equation is 3x²-5x+7=0
On comparing with the standard quadratic equation ax² +bx+c=0
a=3;b=-5;c=7
If α,β are roots then
Sum of the roots =(α+β)=-b/a
=>α+β=-(-5)/3
=>α+β=5/3------>(1)
Product of the roots=(αβ)=c/a
=>αβ=7/3-------->(2)
we know that (a+b)²=a²+b²+2ab
=>a²+b²=(a+b)²-2ab
now
α²+β²=(α+β)²-2(αβ)
=>α²+β²=(5/3)²-2(7/3)
=>α²+β²=25/9-14/3
=>α²+β²=(25-42)/9
=>α²+β²=-17/9
The value of α²+β²=-17/9
Similar questions