Math, asked by StrongGirl, 8 months ago

If α, β are roots of x² — 3x + p = 0 and Ф. ω are roots of x² — 6x + q = 0 and α,β,Ф,ω are in increasing geometric progression then the value of (2q+p) / (2q-p) is equal to

Answers

Answered by pulakmath007
39

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \alpha  \: ,  \:  \beta  \: ,  \phi \: ,  \:  \omega \:

are in increasing geometric progression

Let r ( > 1) be the Common ratio

So

 \beta  \: =    \alpha  \:r \:,  \:  \phi \:  = \alpha  {r}^{2}  \: ,  \:  \omega \:  =  \alpha  \: {r}^{3}

So From first quadratic Equation

\alpha + \alpha  \:r = 3 \:  \: and \:  \: \alpha  \times  \alpha  \:r = p \:  \:  \: ....(1)

From second quadratic equation

\alpha  {r}^{2} + \alpha  {r}^{3} = 6 \:  \: and \:  \: \alpha  {r}^{2} \times \alpha  {r}^{3} = q \:  \:  \:  \: ....(2)

So

 \displaystyle \:  \frac{\alpha  {r}^{2} + \alpha  {r}^{3}}{\alpha   + \alpha  {r}^{}}  =  \frac{6}{3}

 \implies \:  {r}^{2}  = 2

 \implies \: r =  \pm \:  \sqrt{2}

As r > 1

So

r =  \sqrt{2}

So

 \displaystyle \:  \frac{p}{q}  =  \frac{1}{ {r}^{4} }  =  \frac{1}{4}

So

 \displaystyle \:   \frac{q}{p}  = 4

Hence

 \displaystyle \:  \frac{2q + p}{2q - p}

 \displaystyle \:  \frac{2  \times \frac{q}{p}  + 1}{2 \times  \frac{q}{p}  - 1}

 =  \displaystyle \:   \frac{8 + 1}{8 - 1}

  = \displaystyle \:   \frac{9}{7}

Similar questions