if α,β,γ are such that α+β+γ=2,
α^2+β^2+γ^2=6 and α^3+β^3+γ^3=8 then find the value of α^4+β^4+γ^4 is
Answers
Answered by
2
Answer:
(α+β+γ)
2 =α
2 +β
2 +γ
2 +2(αβ+βγ+γα)⇒αβ+βγ+γα=−1
And α
3 +β
3 +γ
3 −3αβγ=(α+β+γ)(α
2 +β
2 +γ
2 −αβ−βγ−γα)⇒αβγ=−2
Then (α 2 +β 2 +γ 2 )
2 =∑α
4 +2∑β
2 γ 2 =∑α
4 +2((∑βγ)
2 −2αβγ(α+β+γ)) +β 4 +γ
4 =36−2((−1)
= 18
Similar questions