If α,β are the roots of ax2+bx+c=0 then α^3+β^3/α^−3+β^−3=
Answers
Answered by
1
Step-by-step explanation:
This is the ageless quadratic theory whereby:
Sum of roots: (â + ß) = -b/a ……….(1)
Product of roots: âß = c/a …………….(2)
Then, find equation with roots (â³ + ß³)
Multiply (1) to power of 3:
(â + ß)³ = (-b/a)³ ……….(3)
â³ + 3â²ß + 3âß² + ß³ = -b³/a³ …….(4)
Substitute (2) in (4)
â³ +3âc/a + 3ßc/a + ß³ = -b³/a³
â³ + ß³ + 3c/a(â + ß) = -b³/a³
â³ + ß³ =(3c/a)(b/a)-b³/a³=3bc/a²-b³/â³
Sum of roots: â³ + ß³=(3abc - b³)/a³ ..(5)
Product of roots: â³ß³ = c³/â³ ……… (6)
The equation whose roots are â³ and ß³
(x - â³)(x - ß³) = x² - xß³ - xâ³ + â³ß³
= x² - x(â³ + ß³) + â³ß³ …………(7)
Substitute (5) and (6) in (7):
= x² - x(3abc - b³)/a³ + c³/a³
= a³x² - x(3abc - b³) + c³
The required equation is given by:
a³x² + x(b³ - 3abc) + c³ = 0 (Ans)
Similar questions