Math, asked by StrongGirl, 7 months ago

If α β are the roots of equation 2x(2x+1) = 1 then β =?

Attachments:

Answers

Answered by venkateshpatil42
2

Step-by-step explanation:

please refer to the attached file

Attachments:
Answered by amansharma264
8

ANSWER.

Option [ 2 ] is correct option.

 \sf \implies \:  - 2 \alpha ( \alpha  + 1)

 \sf \to \:  \green{{ \underline{step  - \: by  - \: step \:  - explanation}}}

 \sf \to \:  \alpha  \: and \:  \beta  \:  \: are \: the \: roots \: of \: the \: equation \: 2x(2x + 1) = 1  \\  \\  \sf \to \: 4 {x}^{2} + 2x - 1 = 0 \\  \\  \sf \to \: sum \: of \: the \: roots \: of \: the \: equation \: ( \alpha  +  \beta ) =  \dfrac{ - b}{a}  \\  \\  \sf \to \:  \alpha  +  \beta  =  \frac{ - 1}{2}  \\  \\  \sf \to \:  \beta  =  \frac{ - 1}{2}  -  \alpha ......(1)

 \sf \to \: as \: we \: know \: that \:  \alpha  \: also \: satisfying \: the \: roots \\  \\  \sf \to \: 4 \alpha  {}^{2}  + 2 \alpha  - 1 = 0 \\  \\  \sf \to \: 4 {a}^{2}  + 2 \alpha  = 1 \\  \\  \sf \to \: divide \: lhs \:  \: and \:  \: rhs \:  \: by \: 2 \\  \\  \sf \to \:  \frac{4 \alpha  {}^{2}  + 2 \alpha }{ \cancel{2}}  =  \frac{1}{ \cancel{2}}   \\  \\  \sf \to \:  {2 \alpha }^{2}  +  \alpha  =  \frac{1}{2}

 \sf \to \: put \: the \: value \: of \:  \frac{1}{2} \:  \: in \:  \: equation \: (1) \\  \\  \sf \to \:   \beta  =  - (2 { \alpha }^{2}  +  \alpha ) - \alpha  \\  \\  \sf \to \:  \beta  =  - 2 \alpha  {}^{2} -  \alpha  -  \alpha  \\  \\  \sf \to \:  \beta  =  - 2 \alpha ( \alpha  + 1) = answer

Similar questions