Math, asked by koosuyesuraju193, 4 months ago

If α,β are the roots of the quadratic equation px2 + qx + r = 0 the α2 /β + β2 /α =​

Answers

Answered by BrainlyPopularman
21

GIVEN :

A quadratic equation px² + qx + r = 0.

• It has two roots α and β.

TO FIND :

• Value of α²/β + β²/α = ?

SOLUTION :

• We know that –

 \\ \implies \bf Sum \:  \: of \:  \: roots =   - \dfrac{Coefficient \:  \:of \:  \: x}{Coefficient \:  \:of \:  \:  {x}^{2} } \\

 \\ \implies \bf  \alpha  +  \beta =   - \dfrac{q}{p} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

• And –

 \\ \implies \bf Product \:  \: of \:  \: roots =   - \dfrac{Constant \:  \: term}{Coefficient \:  \:of \:  \:  {x}^{2} } \\

 \\ \implies \bf  \alpha\beta = \dfrac{r}{p} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(2)\\

• Now Let's find α²/β + β²/α :–

• Let –

 \\ \implies \bf  A =  \dfrac{ { \alpha }^{2} }{ \beta } +  \dfrac{ { \beta }^{2} }{ \alpha }  \\

 \\ \implies \bf  A =  \dfrac{ { \alpha }^{3} + { \beta }^{3}}{ \alpha\beta }\\

• Using identity –

 \\ \implies \large{ \boxed{ \bf  {a}^{3} +  {b}^{3}  =  {(a + b)}^{3} - 3ab(a + b)}}\\

• So that –

 \\ \implies \bf  A =  \dfrac{ { (\alpha +  \beta ) }^{3} - 3 \alpha  \beta ( \alpha  +  \beta )}{ \alpha\beta }\\

• Now put the values –

 \\ \implies \bf  A =  \dfrac{ {  \bigg(- \dfrac{q}{p} \bigg) }^{3} - 3 \bigg(\dfrac{r}{p} \bigg) \bigg(- \dfrac{q}{p}\bigg)}{\bigg(\dfrac{r}{p} \bigg)}\\

 \\ \implies \bf  A =  \dfrac{ { - \bigg( \dfrac{q}{p} \bigg) }^{3} +  3 \bigg(\dfrac{qr}{p^{2} } \bigg) }{\bigg(\dfrac{r}{p} \bigg)}\\

 \\ \implies \bf  A =  \dfrac{ { - \bigg( \dfrac{q}{p} \bigg) }^{3} +  3 \bigg(\dfrac{pqr}{p^{3} } \bigg) }{\bigg(\dfrac{r}{p} \bigg)}\\

 \\ \implies \bf  A =  \dfrac{ \bigg(\dfrac{3pqr -  {q}^{3} }{p^{3} } \bigg) }{\bigg(\dfrac{r}{p} \bigg)}\\

 \\ \implies \bf  A = \bigg(\dfrac{3pqr -  {q}^{3} }{p^{3} } \bigg)\bigg(\dfrac{p}{r} \bigg)\\

 \\ \implies \large { \boxed{\bf  A = \bigg(\dfrac{3pqr -  {q}^{3} }{ {p}^{2} r} \bigg)}}\\

• Hence –

 \\ \implies \large { \boxed{\bf  \dfrac{ { \alpha }^{2} }{ \beta } +  \dfrac{ { \beta }^{2} }{ \alpha }  = \bigg(\dfrac{3pqr -  {q}^{3} }{ {p}^{2} r} \bigg)}}\\

Similar questions