Math, asked by evapauly9875, 1 year ago

If α,β are the zeroes of 2x²-7x+3,find the value of α²+β².

Answers

Answered by anu24239
6

\huge\mathfrak\red{Answer}

THERE ARE TWO WAYS TO SOLVE SUCH TYPE OF QUESTIONS .

YOU CAN CHOOSE ACCORDING TO YOUR CONVENIENCE.

2 {x}^{2}  - 7x + 3 = 0 \\ 2 {x}^{2}  - 6x - x + 3 = 0 \\ 2x(x - 3) - 1(x - 3) = 0 \\ (x - 3)(2x - 1) = 0 \\  \alpha  = 3 \:  \ \\  \beta  =  \frac{1}{2}  \\  \\  { \alpha }^{2}  +  { \beta }^{2}  =  ({3})^{2}  + ( { \frac{1}{2} })^{2}  \\  { \alpha }^{2}  +  { \beta }^{2}  = 9 +  \frac{1}{4}  \\  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{37}{4}  \\  \\ method \: (2) \\  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\  { \alpha }^{2}  +  { \beta }^{2}  =  ({ \frac{7}{2} })^{2}  - 2( \frac{3}{2} ) \\  \\  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{49}{4}  - 3 \\  \\  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{49 - 12}{4}  \\  \\  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{37}{4}  \\  \\  \\ concept \: used \\  \\ sum \: of \: roots =  \frac{ - b}{a}  \\ product \: of \: roots \:  =  \frac{c}{a}  \\  \\ a = 2 \\ b =  - 7 \\ c = 3 \\ acc \: to \: equation

Similar questions