if α,β are the zeroes of 2xsquare - 5x + 3 then find.
(1). α square + β square
(2). 1 upon 2α + 1 upon 2β
(3). α upon β + β upon α
Answers
Answered by
1
Given :
- α,β are root of 2x² - 5x + 3
To find :
(1). α² + β²
(2). (1/2α) + (1/2β)
(3). (α/β) + (β/α)
Solution :
First of all we need to find out the root of given quadratic equations.
➝ 2x² - 5x + 3 = 0
By splitting middle term
➩ 2x² - (2+3)x + 3 = 0
➩ 2x² - 2x - 3x + 3 = 0
➩ 2x(x-1) - 3(x-1) = 0
➩ (2x - 3)(x-1) = 0
This gives
Either (2x-3) = 0 or (x-1) = 0
Either 2x = 3 or x = 1
Either x = 3/2 or x = 1
Let , α = 3/2 than, β = 1
________________________________
(1) α² + β²
➩ α² + β² = (3/2)² + (1)²
➩ α² + β² = (9/4) + 1
➩ α² + β² = (9/4) + (4/4)
➩ α² + β² = (9+4)/4
➩ α² + β² = 13/4
________________________________
(2) (1/2α) + (1/2β)
________________________________
(3) (α/β) + (β/α)
________________________________
ANSWER :
(1). α² + β² = 13/4
(2). (1/2α) + (1/2β) = 5/6
(3). (α/β) + (β/α) = 13/6
Similar questions