Math, asked by varindadhiman09, 1 month ago

if α,β are the zeroes of 2xsquare - 5x + 3 then find.
(1). α square + β square
(2). 1 upon 2α + 1 upon 2β
(3). α upon β + β upon α​

Answers

Answered by MagicalBeast
1

Given :

  • α,β are root of 2x² - 5x + 3

To find :

(1). α² + β²

(2). (1/2α) + (1/2β)

(3). (α/β) + (β/α)

Solution :

First of all we need to find out the root of given quadratic equations.

➝ 2x² - 5x + 3 = 0

By splitting middle term

➩ 2x² - (2+3)x + 3 = 0

➩ 2x² - 2x - 3x + 3 = 0

➩ 2x(x-1) - 3(x-1) = 0

➩ (2x - 3)(x-1) = 0

This gives

Either (2x-3) = 0 or (x-1) = 0

Either 2x = 3 or x = 1

Either x = 3/2 or x = 1

Let , α = 3/2 than, β = 1

________________________________

(1) α² + β²

➩ α² + β² = (3/2)² + (1)²

➩ α² + β² = (9/4) + 1

➩ α² + β² = (9/4) + (4/4)

➩ α² + β² = (9+4)/4

➩ α² + β² = 13/4

________________________________

(2) (1/2α) + (1/2β)

\sf \implies  \: \dfrac{1}{2   \alpha }  +  \dfrac{1}{2  \beta} \:=\: \dfrac{1}{2 \times  \frac{3}{2} }  +  \dfrac{1}{2 \times 1}

\sf \implies  \:  \dfrac{1}{2  \alpha }  +  \dfrac{1}{2  \beta} \:=\:  \:   \dfrac{1}{ \: 3 }  +  \dfrac{1}{2 }

\sf \implies  \:  \dfrac{1}{2  \alpha }  +  \dfrac{1}{2  \beta} \:=\:\dfrac{(1 \times 2) + (1 \times 3)}{6 }

\sf \implies  \:  \dfrac{1}{2  \alpha }  +  \dfrac{1}{2  \beta} \:=\:\dfrac{(2 + 3)}{6 }

\sf \implies\dfrac{1}{2  \alpha }  +  \dfrac{1}{2  \beta} \:=\: \:  \bold{  \dfrac{5}{6 }  }

________________________________

(3) (α/β) + (β/α)

\sf \implies\dfrac{\alpha}{  \beta }  +  \dfrac{ \beta}{\alpha} \:=\: \dfrac{ \:  \:  \dfrac{3}{2}  \: \:  }{1}  \:  +  \:  \dfrac{ \:  \: 1 \:  \: }{ \dfrac{3}{2} }

\sf \implies\dfrac{\alpha}{  \beta }  +  \dfrac{ \beta}{\alpha} \:=\: \:  \:  \dfrac{3}{2}   \:  +  \:  \dfrac{2}{3 }

\sf \implies\dfrac{\alpha}{  \beta }  +  \dfrac{ \beta}{\alpha} \:=\: \:  \:  \dfrac{(3 \times 3) + (2 \times 2)}{6}   \:

\sf \implies\dfrac{\alpha}{  \beta }  +  \dfrac{ \beta}{\alpha} \:=\: \:  \:  \dfrac{ 9 + 4}{6}   \:

\sf \implies\dfrac{\alpha}{  \beta }  +  \dfrac{ \beta}{\alpha} \:=\: \:  \:  \bold{ \dfrac{ 13}{6}   \:  }

________________________________

ANSWER :

(1). α² + β² = 13/4

(2). (1/2α) + (1/2β) = 5/6

(3). (α/β) + (β/α) = 13/6

Similar questions