Math, asked by ItzYourHeartbeat, 1 month ago

If α,β are the zeroes of the polynomial
2x2-7x +k satisfying the condition
α2+β2+αβ= 67/4, then find the value of k
────────────────
Dont Spam # Quality Answer Need...
─────────────
No Need Copied Answer
Spammer will be report​

Answers

Answered by TrustedAnswerer19
105

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

If α,β are the zeroes of the polynomial

2 {x}^{2}  - 7x + k

  \therefore \: \alpha  +  \beta  =  -  \frac{ - 7}{2}  =  \frac{7}{2}  \\   \alpha  \beta  = k/2\:\:----(1)\\  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\  \:  \:  \:  \:  \:  =  {( \frac{7}{2} )}^{2}  - 2k \\  =  \frac{49}{4}  - 2k/2 \\  =  \frac{49 - 4k}{4}  \:  \:  -  -  -  - (2)

Given,

 { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  =  \frac{67}{4}  \\  \implies \:  \frac{49 - 4k}{4}  + k/2 =  \frac{67}{4}\:\:\:\:\:\:[from\:eqn.\:\:(1)\:,\:(2)]  \\ \implies \:  \frac{49 - 4k + 2k}{4}  =  \frac{67}{4}  \\ \implies \: 49 - 2k = 67 \\ \implies \: 2k = 67 + 49 = 116 \\ \implies \: k =  \frac{116}{2}  = 58 \\  \\  \therefore \: k = 58

Answered by itsPapaKaHelicopter
1

Given:-

⇒ {2x}^{2}  - 7x + k

⇒  {ɑ }^{2}  +  { β}^{2}  + ɑβ  =  \frac{67}{4}

Solution:-

\text{we Know that}

⇒\text{sum of zeroes} =  -     \frac{ β}{ɑ }

 \textbf{we have}

⇒β =  - 7

⇒ɑ  = 2

⇒\text{sum of zeroes}  = -   \frac{ - 7}{2}

⇒\text{sum of zeroes}  =  \frac{7}{2}

⇒\text{Product of zeroes} =  \frac{c}{a}

⇒c = k

⇒a = 2

⇒\text{Product of zeroes} =  \frac{k}{2}

⇒ {ɑ }^{2}  +  {β}^{2}  + ɑβ =  \frac{67}{4}

⇒ {ɑ }^{2}  +  { β}^{2}  + (2ɑ β - ɑ β) =  \frac{67}{4}

\text{Taking 2 as common}

⇒(ɑ  + β {)}^{2}  - ɑ β =  \frac{67}{4}

 \textbf{Putting all values}

⇒  { \left(  \frac{7}{2} \right) \]}^{2}  - ( \frac{k}{2} ) =  \frac{67}{4}

⇒ \left(  { \frac{7}{2} }^{2}  \right) \]  -  \frac{k}{2}  =  \frac{67}{4}

⇒ \frac{49}{4}  -  \frac{k}{2}  =  \frac{67}{4}

⇒ 49 - 2k/4 =  \frac{67}{4}

⇒49 - 2k = 67

⇒ - 2k = 67 - 49

⇒ - 2k = 18

⇒k =  \frac{18}{ - 2}

⇒k =  \frac{ - 18}{2}

⇒k =  \frac{ - 9}{1}

⇒k =  - 9

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙﷻ}

Similar questions