Math, asked by swarali3661, 9 months ago

If α β are the zeroes of the polynomial f(x)=x²+x+1 , then 1 upon α + 1 upon β

Answers

Answered by amitkumar44481
3

AnsWer :

- 1.

SolutioN :

We have, Polynomial.

  • Zero α and β.

 \tt \dagger  \:  \:  \:  \:  \:  {x}^{2}  + x + 1.

✎ Compare With General Expression of Polynomial.

 \tt \dagger  \:  \:  \:  \:  \:  a{x}^{2}  + bx + c.

Where as,

  • a = 1.
  • b = 1.
  • c = 1.

☛ Now, Let's Find the value of

 \tt \dagger  \:  \:  \:  \:  \:   \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }  = \: \: ?

 \tt  : \implies  \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }

 \tt  : \implies  \dfrac{ \alpha +   \beta }{ \alpha \beta  }

 \tt  : \implies  \dfrac{ \dfrac{ - b}{ \cancel{a}}  }{  \dfrac{c}{ \cancel{a}}   }

 \tt  : \implies  \dfrac{  - b }{ c }

 \tt  : \implies  \dfrac{ - 1}{1}

 \tt  : \implies  - 1.

Therefore, the value of 1 / α + 1 / β is - 1.

Similar questions