If α,β are the zeroes of the polynomial fx=2x2+5x+k satisfy the relation α2+β2+αβ=214 , then find the value of k.
Answers
Step-by-step explanation:
see the image
Mark as brainliest & follow
l l Correct question l l
If α,β are the zeroes of the polynomial f ( x ) =2x2+5x+k satisfy the relation α²+β²+αβ=21/4 , then find the value of k.
Given:
α and β are the zeroes of the polynomial f ( x ) = 2x² + 5x + k.
- a = 2
- b = 5
- c = k
To find out:
Find the value of k ?
Solution:
★ Sum of zeroes:
α + β = - b / a
⇒ - 5 / 2
★ Product of zeroes:
α.β = c/a
⇒ k / 2
Now,
α² + β² + αβ = 21/4 [ Given ]
★ Adding and Subtracting αβ
⇒ ( α² + β² + αβ + αβ ) - αβ = 21/4
⇒ ( α² + β² + 2αβ ) - αβ = 21/4
We know that,
α² + β² + 2αβ = ( α + β )²
⇒ ( α + β )² - αβ = 21/4
⇒ ( -5/2 )² - k/2 = 21/4 [ α + β = -5/2 and αβ = k/2 ]
⇒ 25/4 - k/2 = 21/4
⇒ -k/2 = 21/4 - 25/4
⇒ -k/2 = -4/4
⇒ -k = -4/4 × 2
⇒ -k = -2
⇒ k = 2
Hence, the value of k is 2.