If are the zeroes of the quadratic polynomial f(x)=3x2 -4x+1, Find a quadratic polynomial whose zeroes are 2/ 2/ ?
Answers
Answer:
The required quadratic polynomial is 2x²+3x-1
Step-by-step explanation:
If \alphaα and \betaβ are the zeroes of quadratic polynomial
f(x)=x^2-3x-2f(x)=x2−3x−2 then
\alpha+\beta=-\frac{\text{Coefficient of x}}{\text{Coefficient of } x^2}α+β=−Coefficient of x2Coefficient of x
\implies \alpha+\beta=-(\frac{-3}{1})=3⟹α+β=−(1−3)=3
Also,
\alpha\beta=\frac{\text{Constant Term}}{\text{Coefficient of }x^2}αβ=Coefficient of x2Constant Term
\implies \alpha\beta=\frac{-2}{1}=-2⟹αβ=1−2=−2
We have to find the quadratic polynomial whose zeroes are \alpha+\frac{1}{\beta}α+β1 and \beta+\frac{1}{\alpha}β+α1
Sum of zeroes
=\alpha+\frac{1}{\beta}+\beta+\frac{1}{\alpha}=α+β1+β+α1
=(\alpha+\beta)+(\frac{1}{\alpha}+\frac{1}{\beta})=(α+β)+(α1+β1)
=3+\frac{\alpha+\beta}{\alpha\beta}=3+αβα+β
=3+\frac{3}{-2}=3+−23
=-\frac{3}{2}=−23
Product of zeroes
=(\alpha+\frac{1}{\beta})\times(\beta+\frac{1}{\alpha})=(α+β1)×(β+α1)
=\alpha\beta+1+1+\frac{1}{\alpha\beta}=αβ+1+1+αβ1
=-2+2+\frac{1}{-2}=−2+2+−21
=-\frac{1}{2}=−21
We know that quadratic polynomial whose zeroes are \alphaα and \betaβ is given by
x^2-(\alpha+\beta)x+\alpha\betax2−(α+β)x+αβ
Therefore, the quadratic polynomial is
x^2-(-\frac{3}{2})x+(-\frac{1}{2})x2−(−23)x+(−21)
or, x^2+\frac{3}{2}x-\frac{1}{2}x2+23x−21
or, 2x^2+3x-12x2+3x−1
Step-by-step explanation:
hope its helpful
mark as brainlist
rate with 5 star
and like it
pls follow