Math, asked by InnocentBOy143, 11 months ago

If α,β are the zeroes of the quadratic polynomial x²-5x+4. Find a quadratic polynomial α+1/β+β+1/α.

Answers

Answered by Anonymous
17

SOLUTION

</u><u>Si</u><u>nce \:  \alpha  \beta \:  are \: the \: zeroes \: o f \: the \: quadratic \: polynomial \:  {x}^{2}  - 5x + 4. \\ </u><u>T</u><u>herefore</u><u>,</u><u> \\  =  &gt;  \alpha  +  \beta  = 5 \: and \:  \:  \alpha  \beta  = 4 \\  \\  </u><u>W</u><u>e \: have \: to \: find \: the \: equation \: whose \: roots \: are \:  \alpha  +  \frac{1}{ \beta }  \: and \:  \beta  +  \frac{1}{ \alpha } .   \\  \\ </u><u>Le</u><u>t \: us \: denote \: a =  \alpha  +  \frac{1}{ \beta }  \: and \: b =  \beta  +  \frac{1}{ \alpha }  \\ </u><u>T</u><u>hen</u><u>,</u><u>\: a + b =  \alpha  +  \frac{1}{ \beta }  +  \beta  +  \frac{1}{ \alpha }  \\  \\  =  &gt; ( \alpha  +  \beta ) +  \frac{ \alpha  +  \beta }{ \alpha  \beta }  = 5 +  \frac{5}{4}  =  \frac{25}{4}  \\  \\  =  &gt; a.b = ( \alpha  +  \frac{1}{ \beta } )( \beta  +  \frac{1}{ \alpha } ) = ( \frac{ \alpha  \beta  + 1}{ \beta } )( \frac{ \alpha  \beta  - 1}{ \alpha } ) \\  \\  =  &gt; ( \frac{ \alpha  \beta  + 1) {}^{2} }{ \alpha  \beta }  =  \frac{25}{4}  \\ </u><u>H</u><u>ence</u><u>,</u><u>\: the \: required \: equation \: whose \: roots \: are \: a =  \alpha  +  \frac{1}{ \beta } and \: b =  \beta  +  \frac{1}{ \alpha }  \: is \: given \: by \:  {x}^{2}  - (a + b)x + ab \\  \\  =  &gt;  {x}^{2}  -  \frac{25}{4} x +  \frac{25}{4}  \\  \\  =  &gt; 4 {x}^{2}  - 25x + 25

Hope it helps ☺️

Answered by PrinceRm
0

SOLUTION

\begin{lgathered}Since \: \alpha \beta \: are \: the \: zeroes \: o f \: the \: quadratic \: polynomial \: {x}^{2} - 5x + 4. \\ Therefore, \\ = > \alpha + \beta = 5 \: and \: \: \alpha \beta = 4 \\ \\ We \: have \: to \: find \: the \: equation \: whose \: roots \: are \: \alpha + \frac{1}{ \beta } \: and \: \beta + \frac{1}{ \alpha } . \\ \\ Let \: us \: denote \: a = \alpha + \frac{1}{ \beta } \: and \: b = \beta + \frac{1}{ \alpha } \\ Then,\: a + b = \alpha + \frac{1}{ \beta } + \beta + \frac{1}{ \alpha } \\ \\ = > ( \alpha + \beta ) + \frac{ \alpha + \beta }{ \alpha \beta } = 5 + \frac{5}{4} = \frac{25}{4} \\ \\ = > a.b = ( \alpha + \frac{1}{ \beta } )( \beta + \frac{1}{ \alpha } ) = ( \frac{ \alpha \beta + 1}{ \beta } )( \frac{ \alpha \beta - 1}{ \alpha } ) \\ \\ = > ( \frac{ \alpha \beta + 1) {}^{2} }{ \alpha \beta } = \frac{25}{4} \\ Hence,\: the \: required \: equation \: whose \: roots \: are \: a = \alpha + \frac{1}{ \beta } and \: b = \beta + \frac{1}{ \alpha } \: is \: given \: by \: {x}^{2} - (a + b)x + ab \\ \\ = > {x}^{2} - \frac{25}{4} x + \frac{25}{4} \\ \\ = > 4 {x}^{2} - 25x + 25\end{lgathered}

Sinceαβarethezeroesofthequadraticpolynomialx

2

−5x+4.

Therefore,

=>α+β=5andαβ=4

Wehavetofindtheequationwhoserootsareα+

β

1

andβ+

α

1

.

Letusdenotea=α+

β

1

andb=β+

α

1

Then,a+b=α+

β

1

+β+

α

1

=>(α+β)+

αβ

α+β

=5+

4

5

=

4

25

=>a.b=(α+

β

1

)(β+

α

1

)=(

β

αβ+1

)(

α

αβ−1

)

=>(

αβ

αβ+1)

2

=

4

25

Hence,therequiredequationwhoserootsarea=α+

β

1

andb=β+

α

1

isgivenbyx

2

−(a+b)x+ab

=>x

2

4

25

x+

4

25

=>4x

2

−25x+25

Similar questions