Math, asked by gupta1507, 10 months ago

 if α ,β are the zeros of kx²-2x+3k such that α + β = α β then k=? 


Answers

Answered by Anonymous
11

\bold\red{\underline{\underline{Answer:}}}

\bold{The \ value \ of \ k \ is \frac{2}{3}.}

\bold\blue{Explanation}

\bold{The \ given \ quadratic \ polynomial \ is}

\bold{k^{2}-2x+3k}

\bold{Here, \ a=k, \ b=-2 \ and \ c=3k}

\bold{We \ know \ that,}

\bold{\alpha+\beta=\frac{-b}{a}}

\bold{\alpha×\beta=\frac{c}{a}}

\bold\orange{Given:}

\bold{=>The \ given \ quadratic \ polynomial \ is}

\bold{k^{2}-2x+3k}

\bold{=>\alpha \ and \ beta \ are \ zeroes.}

\bold{=>\alpha+\beta=\alpha×\beta}

\bold\pink{To \ find:}

\bold{=>The \ value \ of \ k.}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ quadratic \ polynomial \ is}

\bold{k^{2}-2x+3k}

\bold{\alpha+\beta=\alpha×\beta}

\bold{\frac{-b}{a}=\frac{c}{a}}

\bold{\frac{-(-2)}{k}=\frac{3k}{k}}

\bold{k=\frac{2}{3}}

\bold{Therefore,}

\bold\purple{The \ value \ of \ k \ is \frac{2}{3}.}

Answered by nim515
0

Answer:

Sorry I have not solved this chapter

Similar questions