Math, asked by Rushque6493, 15 days ago

If , are the zeros of the polynomial 2x2 – 4x + 5. find the value of (i) α2 + β2 (ii) (α - β)2

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {2x}^{2} - 4x  +  5

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  -  \: \dfrac{( - 4)}{2}  = 2

Also, we know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{5}{2}

Now,

Consider,

 \red{\rm :\longmapsto\: { \alpha }^{2}  +  { \beta }^{2}}

\rm \:  =  \:  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

\rm \:  =  \:  {(2)}^{2}  - 2 \times \dfrac{5}{2}

\rm \:  =  \: 4 - 5

\rm \:  =  \:  - 1

Hence,

\red{\boxed{ \qquad \bf{ { \alpha }^{2}  +  { \beta }^{2}  =  - 1 \qquad}}}

Now,

Consider,

 \blue{\rm :\longmapsto\: {( \alpha -   \beta )}^{2} }

\rm \:  =  \:  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta

\rm \:  =  \:  {(2)}^{2}  - 4 \times \dfrac{5}{2}

\rm \:  =  \: 4 - 10

\rm \:  =  \:  - 6

Hence,

\blue{\boxed{ \qquad \bf{ { (\alpha -  \beta ) }^{2}  =  - 6 \qquad}}}

Additional Information :-

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3}  +  {bx}^{2} + cx + d, \: then \:

\red{\boxed{ \rm{ \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a} }}}

\red{\boxed{ \rm{ \alpha \beta    + \beta \gamma   +  \gamma  \alpha  =   \dfrac{c}{a} }}}

\red{\boxed{ \rm{ \alpha \beta \gamma  =  - \dfrac{d}{a} }}}

Answered by subhashsy0910
0

p(x)=2x2-4x+5

So, here a=2, b=-4, c=5

a+b= - b/a

a+ b= -(-4)/2

a+b=2

and,

ab=c/a

ab= 5/2

Now,

(a+b)2= a2+b2+2ab

(2)2=. a2+b2+2×5/2

4=. a2+b2+5

4-5=a2+b2

( a2+b2= -1 )

hence,

(a-b)2= a2+b2-2ab

(a-b)2= -1-2×5/2

(a-b)2=-1-5

(a-b)2=-6

Similar questions