Math, asked by Vijayganji2006, 2 days ago

If α, β are the zeros of the polynomial 3x2 + 5x - 7, then find 1/α + 1/β.​

Answers

Answered by jitendra12iitg
1

Answer:

The answer is \dfrac{5}{7}

Step-by-step explanation:

Concept : If \alpha,\beta are zeroes of ax^2+bx+c, then

                     \alpha+\beta=-\dfrac{b}{a} \text{   and     } \alpha\beta=\dfrac{c}{a}

Here given \alpha,\beta are the zeroes of 3x^2+5x-7

              \Rightarrow \alpha+\beta=-\dfrac{5}{3}, \alpha\beta=-\dfrac{7}3}

Therefore  

             \dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{\beta+\alpha}{\alpha\beta}=\dfrac{-\frac{5}{3}}{-\frac{7}{3}}=\dfrac{5}{7}

Similar questions