Math, asked by Akshaja8589, 9 months ago

If α, β are the zeros of the polynomial f(x) = ax² + bx + c, then (1/α²) + (1/β²) =
A. (b² - 2ac)/a²
B. (b² - 2ac)/c²
C. (b² + 2ac)/a²
D. (b² + 2ac)/c²

Answers

Answered by borsurerajgmailcom
2

Step-by-step explanation:

option C is correct answer

Answered by TRISHNADEVI
20

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: ANSWER \:  \: } \mid}}}}}

 \:  \:  \:  \:  \:  \:  \:  \tt{If  \:  \: \alpha \:  \:  and \:  \:  \beta  \:  \: are  \:  \: the \:  \:  zeros  \:  \: of } \\  \tt{the \:  \:  polynomial \:  \:  f(x) = ax{}{2} + bx + c ,}  \\  \tt{then \:  \frac{1}{\alpha {}^{2} } + \frac{1}{\beta {}^{2} }  = } \\  \\ \sf{ A.  \: \frac{b {}^{2}  - 2ac}{a {}^{2} }} \\  \\    \sf{B. \: \frac{b {}^{2}  - 2ac}{c {}^{2} } \:  \:  \:  \:  \:  \:  \huge{ \underline{ \: \:  \checkmark \:  \: }}} \\ \\  \sf{  C. \:  \frac{b {}^{2}   +  2ac}{a {}^{2} }} \\  \\  \sf{D.\frac{b {}^{2}   +  2ac}{c {}^{2} }}</p><p>

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline {\mathfrak{ \:  \: Given, \:  \: }} \\  \\  \text{Quadratic  \:  \: polynomial \:  \:  is : } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\tt{ \red{f(x) = ax {}^{2}  + bx + c.}}} \\  \\  \text{The zeroes of thr polynomial are : } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge{\tt{ \red{ \alpha \:  \:  and  \:  \:  \beta  }}} \\  \\  \underline {\mathfrak{ \:  \:To \:  \:  find :-  }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge{\tt{ \pink{ \frac{1}{ \alpha {}^{2} } +  \frac{1}{ \beta {}^{2} }  = \:  ?}}}

 \underline{ \mathfrak{ \:  \: We \:  \:  know \:  \:  that, \:  \: }} \\  \\   \:  \ \\   \:  \:  \:  \:  \:  \:  \: \sf{ Sum  \:  \: of  \:  \: zeroes =  \frac{ - b}{a} } \\  \\  \sf{ \implies \:  \alpha +  \beta =\frac{ - b}{a} \:  \:  -  -  -  -  -  -  &gt; (1)} \\  \\  \underline{ \mathfrak{ \:  And \: , }} \\  \\  \:  \:  \:  \:  \:  \:  \: \sf{Product  \: \: of  \:  \: zeroes = \frac{c}{a}} \\  \\  \sf {\implies \:   \alpha. \beta = \frac{c}{a}\:  \:  -  -  -  -  -  -  &gt; (2)}

 \mathfrak{Now,} \\  \\ \underline{ \mathfrak{ \:  \: We \:  \:  know \:  \:  that, \:  \: }}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bold{a{}^2 + b{}^2 = (a + b){}^2 - 2ab}}

 \tt{ \alpha {}^{2}  +  \beta {}^{2} = ( \alpha +  \beta) {}^{2}  - 2 .\alpha. \beta }  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{= ( \frac{-b}{a}){}^2 - 2( \frac{c}{a}) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:[From (1) and (2)]} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{= \frac{b{}^2}{a{}^2}-  \frac{2c}{a}} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{=   \frac{b{}^2 - 2ca}{a{}^2}    \:  \:  \:  \:  \: --- - - -  -  -  &gt;  (3)}

 \:  \:  \:  \:  \:  \:  \:  \:  \sf{  \pink{\frac{1}{ \alpha{}^2} +  \frac{1}{ \beta{}^2}}} \\  \\  \sf{=  \frac{ \beta{}^2 +  \alpha{}^2}{ \alpha {}^{2} . \beta{}^2} }\\  \\   \sf{=  \frac{ \alpha {}^{2} +  \beta {}^{2}  }{ (\alpha. \beta ){}^{2} } } \\  \\  \sf{ =  \frac{ \frac{b^2 - 2ca}{a^2 }}{( \frac{c}{a} ) {}^{2} } }  \\  \\  \sf{ = \frac{ \frac{b^2 - 2ca}{a^2 }}{\frac{c {}^{2} }{a {}^{2} }  } } \\  \\  \sf{=  \frac{b^2 - 2ca}{ \cancel{a^2 }} \times  \frac{ \cancel{a {}^{2} }}{c {}^{2} }}  \\  \\    \sf{ = \frac{ (b{}^2 - 2ca)}{c{}^2}} \\  \\ \sf{ = \pink{ \frac{ (b{}^2 - 2ac)}{c{}^2}}}

Similar questions