Math, asked by jason5421, 9 months ago

If α, β, γ are the zeros of the polynomial f(x) = x³ – px² + qx – r, then (1/αβ) + (1/βγ) + (1/γα) =
A. r/p
B. p/r
C. -p/r
D. -r/p

Answers

Answered by dheerajk1912
14

\boldsymbol{\frac{1}{\alpha \beta }+\frac{1}{\beta \gamma }+\frac{1 }{\gamma \alpha}=\frac{p}{r}}  . Option B is correct.

Step-by-step explanation:

  • Given polynomial which zeroes are α, β and γ

        \mathbf{F(x)=x^{3}-px^{2}+qx-r}

  • So

         \mathbf{\alpha +\beta +\gamma =-\frac{(-p)}{1}=p}       ...1)

         \mathbf{\alpha\beta  +\beta\gamma  +\gamma\alpha  =\frac{(q)}{1}=q}     ...2)

         \mathbf{\alpha\beta\gamma =-\frac{(-r)}{1}=r}                ...3)

  • Now come to question

        \boldsymbol{\frac{1}{\alpha \beta }+\frac{1}{\beta \gamma }+\frac{1 }{\gamma \alpha}}

        Here L.C.M of denominator is αβγ

        \boldsymbol{\frac{\gamma +\alpha +\beta }{\alpha \beta \gamma }}        ...4)

  • Equation 4) can be written as with help of equation 1) and equation 3)

        \boldsymbol{\frac{\gamma +\alpha +\beta }{\alpha \beta \gamma }=\frac{p}{r}}    Means option B is correct.

Similar questions