If α,β are the zeros of the polynomial, x sq-px +36 and α sq + β sq = 9, then what is the value of p?
Answers
Answer:
__________________________________
α and ß are the zeroes of polynomial x² - px + q.
In this quadratic equation,
Coefficient of x² ( a ) = 1
Coefficient of x( b ) = -p
Constant term ( c ) = q.
We have,
⇒ Sum of zeroes = -b/a
⇒ α + ß = - ( - p ) / 1
∴ α + ß = p.
⇒ Product of zeroes = c/a
⇒αß =q/1 = q
Now,
⇒ ( α + ß )² = α² + ß² + 2 αß
⇒ ( p )² = α² + ß² + 2 q
⇒ p² = α² + ß² + 2 q
∴α²+ß²= p² - 2q
Hope it helps
α and ß are the zeroes of polynomial x² - px + q.
In this quadratic equation,
Coefficient of x² ( a ) = 1
Coefficient of x( b ) = -p
Constant term ( c ) = q.
We have,
⇒ Sum of zeroes = -b/a
⇒ α + ß = - ( - p ) / 1
∴ α + ß = p.
⇒ Product of zeroes = c/a
⇒αß =q/1 = q
Now,
⇒ ( α + ß )² = α² + ß² + 2 αß
⇒ ( p )² = α² + ß² + 2 q
⇒ p² = α² + ß² + 2 q
∴α²+ß²= p² - 2q