Math, asked by poggersn, 2 months ago

If ∝, are zeroes of the polynomial 2x2-5x+7, then find a quadratic
polynomial whose zeroes are 3∝+4 and 4∝+3.​

Answers

Answered by Khushibrainly
0

Refer to the attachment and please mark brainliest

Attachments:
Answered by babyoyo
4

Answer:

Step-by-step explanation:

α² + β² can be written as (α + β)² - 2αβ

p(x) = 2x² - 5x + 7

a = 2 , b = - 5 , c = 7

α and β are the zeros of p(x)

we know that ,

sum of zeros = α + β

                     = -b/a

                     = 5/2

product of zeros = c/a

                          = 7/2

===============================================

3α + 4β and 4α + 3β are zeros of a polynomial.

sum of zeros = 3α + 4β  + 4α + 3β

                      = 7α + 7β

                      = 7 x 5/2

                      =  35/2

product of zeros = (3α + 4β) (4α + 3β)

                            = 3α(4α + 3β) + 4β(4α+3β)

                            = 12α^2 + 9αβ + 16αβ + 12β^2

                            = 12α^2 + 25αβ + 12β^2

                            = 12(α^2 + β^2) + 25αβ

                            = 12[(α+β)^2-2αβ] + 25αβ

                            = 12[(5/2)^2 -2 x 7/2] + 25 x 7/2

                            = 12 x 25/4 -7 + 175/2

                            = 12 x -3/4 + 175/2

                           = -18/2 + 175/2

                           = 157/2

Similar questions