Math, asked by angelobattlefip87ik3, 1 year ago

If α, β are zeroes of the polynomial x2-2x-8, then form a quadratic polynomial whose zeroes are 2α and 2β

Answers

Answered by ak9592304170
60

Answer:


Step-by-step explanation:


Attachments:
Answered by mysticd
56

Answer:

Form\: of \: a\: polynomial\\whose \: zeroes \: are\: 2\alpha \: and\: 2\beta\\ \: is \: x^{2}-4x-32

Step-by-step explanation:

Given \: \alpha \: and \: \beta\\ are \: two \: zeroes \: of\\ the \: polynomial \: x^{2}-2x-8

 Sum \: of \:the \: zeroes \\=\alpha + \beta\\=-\frac{x-coefficient }{x^2-coefficient}\\=-\frac{-2}{1}\\=2---(1)

 Product\:of \: the \: zeroes\\=\alpha \beta\\=\frac{constant}{x^{2}\: coefficient}\\=\frac{-8}{1}\\=-8---(2)

Now,\\If\: Zeroes\:of \: polynomial\\ \: are \:2\alpha \: and \: 2\beta

Form\: of \: a\: polynomial:\\x^{2}-(sum\:of\:the \:zeroes )x+product\:of\:zeroes

x^{2}-(2\alfa+2\beta)x+(2\alfa\times 2\beta

=x^{2}-2(\alpha+\beta)+4\alpha\beta

=x^{2}-2\times 2x+4(-8)

/* From (1) and (2) */

= x^{2}-4x-32

•••♪

Similar questions