Math, asked by aashishukla9981, 2 months ago

If α,β are zeroes of the quadratic polynomial x2 + 2x - 1, then find the value of 1/αβ² + 1/α²β​

Answers

Answered by Sauron
9

Answer:

\bf{ \dfrac{1}{ { \alpha }^{2} \beta}}  + \dfrac{1}{ { \alpha { \beta}}^{2}} =  - 2

Step-by-step explanation:

Polynomial = x² + 2x – 1

Value of \sf{ \dfrac{1}{ { \alpha }^{2} \beta}}  + \dfrac{1}{ { \alpha { \beta}}^{2}} = ??

We know that,

 \sf{\alpha  +  \beta  =  \dfrac{ - b}{a}} and \sf{\alpha  \beta  =  \dfrac{c}{a}}

In the polynomial,

  • a = 1
  • b = 2
  • c = -1

\longrightarrow \:  \sf{\alpha  +  \beta  =  \dfrac{ - b}{a}}

\longrightarrow \:  \sf{\alpha  +  \beta  =  \dfrac{ -2}{1}}

\longrightarrow \:  \sf{\alpha  +  \beta  =  - 2}

___________________________

\longrightarrow \:  \sf{\alpha   \beta  =  \dfrac{ c}{a}}

\longrightarrow \:  \sf{\alpha   \beta  =  \dfrac{ - 1}{1}}

\longrightarrow \:  \sf{\alpha   \beta  =  - 1}

___________________________

Value of \sf{ \dfrac{1}{ { \alpha }^{2} \beta}}  + \dfrac{1}{ { \alpha { \beta}}^{2}} :

\longrightarrow \: \sf{ \dfrac{1}{ { \alpha }^{2} \beta}}  + \dfrac{1}{ { \alpha { \beta}}^{2}}

\longrightarrow \: \sf{ \bigg(\dfrac{1}{ { \alpha }^{2} \beta} \times  \dfrac{ \beta }{ \beta }\bigg)} + \bigg(\dfrac{1}{ { \alpha { \beta}}^{2}} \times  \dfrac{ \alpha }{ \alpha } \bigg)

\longrightarrow \: \sf{ \dfrac{ \beta }{ { \alpha }^{2} \beta^{2} }}  + \dfrac{ \alpha }{ { \alpha^{2} { \beta}}^{2}}

\longrightarrow \: \sf{ \dfrac{ \alpha  +  \beta }{ { \alpha }^{2} \beta^{2} }}

\longrightarrow \: \sf{ \dfrac{ - 2 }{ (\alpha  \beta)^{2} }}

\longrightarrow \: \sf{ \dfrac{ - 2 }{ ( - 1)^{2} }}

\longrightarrow \: \sf{ \dfrac{ - 2 }{1 }}

\longrightarrow \:\sf{ - 2}

Value of \sf{ \dfrac{1}{ { \alpha }^{2} \beta}}  + \dfrac{1}{ { \alpha { \beta}}^{2}} is –2.

\bf{\therefore \: \dfrac{1}{ { \alpha }^{2} \beta}}  + \dfrac{1}{ { \alpha { \beta}}^{2}} =  - 2

Similar questions