Math, asked by hridaym200530, 10 months ago

If α, β are zeroes of x2 –6x + k and 3α + 2β = 20, find α, β.

Answers

Answered by Anonymous
0

  \huge  \underbrace{\boxed{ \bf\dag  \green{ Given} \dag }}

 \tt \alpha , \beta  \: are \: zeroes \: of \:  {x}^{2}  - 6x + y

 \tt3  \alpha  + 2 \beta  = 20

  \huge  \underbrace{\boxed{ \bf\dag  \red{ FIND} \dag }}

 \tt y = ?

  \huge  \underbrace{\boxed{ \bf\dag  \pink{ Solution} \dag }}

 \tt  {x}^{2}  - 6x + y \\  \tt  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ \cancel - ( \cancel - 6)}{1}  = 6.....(i) \\  \tt  \alpha  \beta  =  \frac{c}{a}  =  \frac{a}{1}  = y .....(ii) \\  \tt multipy \: eq(i) \: by3 \\  \tt 3( \alpha  +  \beta ) = 3(6) \\  \tt 3 \alpha  + 3 \beta  = 18.....(iii) \\  \tt given \: eq. \: is, \: 3 \alpha  + 2 \beta  = 20.....(iv) \\  \tt subtracting \: eq(iv)from(iii), \\  \tt 3 \alpha  + 3 \beta  = 18 \\  \tt    \underline{   - 3 \alpha   +   2 \beta  =    20} \\  \tt   \underline{ \:  \:  \:  \:  \beta  \:  \:   =  \:  \:  \:  \:  \:  \:  \:    - 2} \\  \tt from \: eq(i), - 2 +  \beta  = 6 \\ \tt  \implies \beta = 6 + 2 = 8  \\ \tt now, \: from \: eq(ii), \\  \tt  \alpha  \beta  = y \\  \tt \therefore y =  ( - 2)(8) =  - 16

 \underbrace{\boxed{ \bf  \purple{ Answer}}}

 \boxed{ \tt value \: of \: y \: is - 16.}

Similar questions