Math, asked by moksh77793, 10 months ago

If α, β are zeroes of x2+7x+7, find the value of 1/α + 1/β - 2 αβ.​

Answers

Answered by raushan6198
3

Step-by-step explanation:

 {x}^{2}  + 7x + 7 = 0 \\   \frac{1}{ \alpha }  +  \frac{1}{ \beta }  - 2 \alpha  \beta  \\  =  \frac{ \alpha  +  \beta }{ \alpha  \beta }  - 2 \alpha  \beta  \\ as \: we \: know \: that \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  =  >  \alpha  +  \beta  =  \frac{-7}{1}  \\  =  >  \alpha  +  \beta  = - 7 \\  \\  \alpha  \beta  =   \frac{c}{ \alpha }  \\  =  >  \alpha  \beta  =   \frac{7}{1}  \\  =  >  \alpha  \beta  = 7 \\  \\  \frac{ \alpha  +  \beta }{ \alpha  \beta }  - 2 \alpha  \beta  \\  =  \frac{-7}{7}  - 2 \times 7 \\  =- 1 - 14 \\  =  - 15

Answered by Sudhir1188
17

ANSWER:

  • The value of above expression = (-15)

GIVEN:

  • α, β are zeroes of x²+7x+7.

TO FIND:

 \frac{1}{ \alpha}  +  \frac{1}{ \beta}  - 2 \alpha \beta

SOLUTION

p(x) = x²+7x+7

  \implies \: \alpha +  \beta  =  \frac{ - (coefficient \: of \: x)}{coefficient \: of \: x {}^{2} }  \\   \implies \: \alpha  + \beta =  \frac{ - 7}{1}  \\  \\  \implies \:  \alpha \beta =  \frac{(constant \: term)}{coefficient \: of \: x {}^{2} }  \\  \implies \alpha \beta \:  =  \frac{7}{1}

Now putting the Values in the above expression.

 = (\frac{1}{ \alpha}  +  \frac{1}{ \beta})  - 2 \alpha \beta \\   = ( \frac{\alpha  + \beta}{\alpha \beta} ) - 2\alpha \beta \\  = ( \frac{ - 7}{7} ) - (2 \times 7) \\  =  - 1 - 14 \\  =  - 15

So the value of above expression = (-15)

NOTE:

some important formulas

  \implies \: \alpha +  \beta  =  \frac{ - (coefficient \: of \: x)}{coefficient \: of \: x {}^{2} }  \\   \\  \implies \:  \alpha \beta =  \frac{(constant \: term)}{coefficient \: of \: x {}^{2} }

Similar questions