Math, asked by fhjjhhhhhjjj, 11 months ago

if α, β are zeros of 3x² - 4x +1, find value of a) α/β+ β/α b) α²/β + β²/α​

Answers

Answered by Anonymous
7

Solution :-

Given : f(x) = 3x² - 4x + 1

Sum of zeros = α + β = 4/3

Product of zeros = α β = 1/3

a) α/β + β/α

= [α² + β²]/βα

= [(α + β)² - 2αβ]/ αβ

= [(4/3)² - 2 × 1/3]/[1/3]

= [16/9 - 2/3]/[1/6]

= [(16 - 6)/9]/[1/3]

= (10 × 3)/(1 × 9)

= 10/3 ans.

b) α²/β + β²/α

= [α³ + β³]/α β

= [(α + β)³ - 3αβ(α + β)]/αβ

= [(4/3)³ - 3 × 1/3(4/3)]/1/3

= [64/27 - 4/3]/[1/3]

= [(64 - 36)/27 ]/[1/3]

= (28 × 3)/27

= 28/9 ans.

Answered by Stylishboyyyyyyy
1

 \Large{ \mathfrak{ \underline{ \underline{ Solution : }}}}

 \sf Given : f(x) = 3x {}^{2}  - 4x + 1 \\  \\  \sf </p><p></p><p>Sum  \: of  \: zeros = α + β  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{4}{3} \\ \\   \sf</p><p></p><p>Product  \: of  \: zeros = α β  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf=  \dfrac{1}{3} \\   \\ \sf</p><p></p><p>a) \:   \frac{α}{β} +  \frac βα  \\  \sf</p><p></p><p>=  \dfrac{[α {}^{2}  + β {}^{2} ]}{β \alpha}  \\  \sf</p><p></p><p>=  \dfrac{[{(α + β)}^{2}  - 2αβ]}{αβ} \\  \sf</p><p></p><p>=  \dfrac{ \bigg[{ \bigg( \dfrac43 \bigg)}^{2} - 2 ×  \dfrac 13 \bigg]}{\dfrac13} \\  \sf</p><p></p><p>=   \dfrac{\bigg[ \dfrac{16}9 -  \dfrac23\bigg]}{ \dfrac16} \\  \sf</p><p></p><p>=  \dfrac{\bigg[ \dfrac{(16 - 6)}9\bigg]}{ \dfrac13} \\  \sf</p><p></p><p>=  \dfrac{(10 × 3)}{(1 × 9)} \\  \sf</p><p></p><p>=  \boxed{ \sf \dfrac{10}3}  \\  \\  \sf </p><p></p><p>b)  \dfrac{α {}^{2}}{β} +  \dfrac{β {}^{2}}{α} \\  \sf</p><p></p><p>=  \sf \dfrac{[α {}^{3} + β {}^{3} ]}{α β}\\  \sf</p><p></p><p>=  \dfrac{[(α + β) {}^{3}  - 3αβ(α + β)]}{αβ}</p><p>\\  \sf</p><p>=  \dfrac{ \bigg[{\bigg( \dfrac{4}3\bigg)}^{3}  - 3 ×  \dfrac13\bigg( \dfrac43\bigg)\bigg]}{ \dfrac13}</p><p>\\  \sf </p><p>= \dfrac{ \bigg[ \dfrac{64}{27} -  \dfrac43\bigg]}{ \dfrac13}</p><p>\\  \sf</p><p>=  \dfrac{\bigg[ \dfrac{(64 - 36)}{27} \bigg]}{ \dfrac{1}3}</p><p>\\  \sf</p><p>=  \dfrac{(28 × 3)}{27}</p><p>\\  </p><p>=   \boxed{ \sf \dfrac{28}{9}}

Similar questions