Math, asked by dilbaskv, 11 months ago

If area and perimeter of a rect is 6000cm^2 and 340cm resp. Then the length of rect is

Answers

Answered by raysauhardya03
1

Answer:See this

Step-by-step explanation:

Attachments:

dilbaskv: Wat is this???
Answered by Anonymous
1

\huge\bf\red{ɢɪᴠᴇɴ :}

ᴛʜᴇ ʙᴀꜱᴇ ᴏꜰ ᴛʜᴇ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ ɪꜱ ᴛʜʀɪᴄᴇ ɪᴛꜱ ʜᴇɪɢʜᴛ.

ᴀʀᴇᴀ ᴏꜰ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ = 867 ᴄᴍ²

\huge\bf\red{Tᴏ Fɪɴᴅ :}

ᴛʜᴇ ʜᴇɪɢʜᴛ.

ᴛʜᴇ ʙᴀꜱᴇ.

\huge\bf\red{Sᴏʟᴜᴛɪᴏɴ : }

ʜᴇɴᴄᴇ,ɪᴛ ɪꜱ ɢɪᴠᴇɴ ᴛʜᴀᴛ ᴛʜᴇ ʙᴀꜱᴇ ᴏꜰ ᴛʜᴇ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ ɪꜱ ᴛʜʀɪᴄᴇ ɪᴛꜱ ʜᴇɪɢʜᴛ.

ʟᴇᴛ'ꜱ ꜰɪʀꜱᴛ ᴄᴏɴꜱɪᴅᴇʀ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏꜰ ᴛʜᴇ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ ʙᴇ x ᴛʜᴇɴ ᴛʜᴇ ʙᴀꜱᴇ ᴡɪʟʟ ʙᴇ 3×x = 3x

Now,

{\underline{\boxed{\sf{\blue{Area_{(parallelogram)}=base\times{height}}}}}}

\dashrightarrow\sf{867=3x\times{x}}

\dashrightarrow\sf{867=3x^2}

\dashrightarrow\dfrac{\cancel{867}^{289}}{\cancel{3}^1}\sf{=x^2}

\dashrightarrow\sf{289=x^2}

\dashrightarrow\sf{x=\sqrt{289}}

\dashrightarrow\sf{x=\sqrt{17\times{17}}}

\bigstar\underline{\boxed{\sf{\pink{x=17}}}}

{\text{\sf{Therefore,the Height (x) is 17cm}}}

{\text{\sf{And the Base (3x)}}}\sf{= 3\times{17}=51 cm.}

Similar questions