Math, asked by zoyakhan3625, 1 year ago

If area of an equilateral triangle is 81 root 3 cm sq .find its perimeter

Answers

Answered by kavya005
42
Heya...
Hope this helps you...
Attachments:
Answered by vikram991
19

\huge{\bf{\underline{\red{Solution :}}}}

Suppose the side of Equilateral triangle be a cm

We know ,

Area of Equilateral triangle = \bold{\frac{\sqrt{3} a  }4} \  \bold{cm^{2}}

Now According to Question :

\implies \bold{\frac{\sqrt{3}   }{4} a^{2} } = \bold{ 81\sqrt{3}}

\implies \bold{a^{2} = 81 \times 4 }

\implies \bold{ a = \sqrt{81 \times 4 } }

\implies \bold{a = 9 \times 2 }

\implies \bold{18 \ cm}

∴Now Perimeter of Equilateral Triangle :

We know that perimeter of Equilateral triangle = 3a

⇒3 x 18

54 cm (Answer)

\rule{200}2

Area of Equilateral Triangle :

⇒If the side of equilateral triangle is a so its semi- perimeter :

\implies \bold{ s = \frac{a + a + a }{2} }

\implies \bold{\frac{3a}{2}}

Now Heron's Formula to find Area of equilateral triangle :

\implies \bold{\sqrt{\frac{3a}{2}[\frac{3a}{2} - a ] [ \frac{3a}{2} - a ] [ \frac{3a}{2} - a] } }

\implies \bold{\sqrt{\frac{3a}{2} \times \frac{a}{2}  \times \frac{a}{2} \times \frac{a}{2}}  }

\implies \huge{\bf{\star{\frac{\sqrt{3} a^{2}  }{4} unit^{2} }}}

Similar questions