Math, asked by Mister360, 3 months ago

If area of circle is 44 cm. Then find its circumference.

Answers

Answered by Anonymous
6

Step-by-step explanation:

Question:-

If the area of the circle is 44cm,then find its circumference.

Answer:-

Given :-

The given figure is a circle.

The area of the circle is 44cm.

To find :-

The circumference of the circle

Process :-

We all know that :-

⇒Area = \pi {r}^{2}

∴ Putting the above value in the equation:-

⇒ Area =\pi {r}^{2}  \\  \\ ⇒ 44 =3.15 \times  {r}^{2}   \\  \\ ⇒ {r}^{2} ×3.15=44 \\  \\ ⇒ {r}^{2}  =  \frac{44}{3.15}  \\  \\ ⇒ {r}^{2} =1 44× \frac{100}{315}  \\  \\ ⇒ {r}^{2}  = 13.96 \\  \\ ⇒r =  \sqrt{13.96}  \\  \\ ⇒r = 3.7

∴ We can see that the radius of the circle is 3.7cm.

Then,the circumference of the circle:-

⇒ Circumference = 2\pi \: r

Putting the value of radius in the equation:-

⇒ Circumference = 2×\pi×3.7 \\  \\ ⇒ Circumference = 2×3.15×3.7 \\  \\ ⇒ Circumference = 23.31 \: cm

Thus,we can conclude that the circumference of the circle is 23.31cm.

More to know

( Is provided in the attachment )

Hope it helps you...

#Be brainly

Attachments:
Answered by DüllStâr
200

Digram:

 \\  \\

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large 3.74\ cm}\end{picture}

 \\  \\

Correct Question:

 \\

If area of circle is 44 cm². Then find its circumference.

 \\

Given:

 \\

  • Area of Circle = 44 cm²

 \\

To find:

 \\

  • circumference of Circle

 \\

Solution:

 \\

To find circumference first we should know value of radius of circle

 \\

we know:

 \\

 \bigstar \boxed{ \rm{Area \: of \: circle = \pi {r}^{2} }}

 \\

By using this formula we can find value of Area of Circle .

 \\

 \dashrightarrow \: \sf{}Area \: of \: circle = \pi {r}^{2}

 \\  \\

 \dashrightarrow \: \sf{}44= \dfrac{22}{7} \times  {r}^{2}

 \\  \\

 \dashrightarrow \: \sf{}\dfrac{22}{7} \times  {r}^{2}  = 44

 \\  \\

 \dashrightarrow \: \sf{}{r}^{2}  = 44 \times  \dfrac{7}{22}

 \\  \\

 \dashrightarrow \: \sf{}{r}^{2}  = 2 \times 2 \times 11 \times  \dfrac{7}{2 \times 11}

 \\  \\

 \dashrightarrow \: \sf{}{r}^{2}  = 2 \times\cancel 2 \times \cancel{11} \times  \dfrac{7}{\cancel2 \times\cancel{ 11}}

 \\  \\

 \dashrightarrow \: \sf{}{r}^{2}  = 2 \times7

 \\  \\

 \dashrightarrow \: \sf{}{r}^{2}  = 14

 \\  \\

 \dashrightarrow \: \sf{}{r}  = \sqrt{14}

 \\  \\

 \dashrightarrow \: \sf{}{r}  = 3.74 \: cm  \:  \: \{approx \}

 \\  \\

Finally Let's find circumference of circle .

 \\

we know:

 \\

 \bigstar \boxed{ \rm{circumference \: of \: circle =2\pi{}r}}

 \\

By using this formula we can find value of circumference of Circle

 \\

 \leadsto \sf{}circumference \: of \: circle =2\pi{}r

 \\  \\

 \leadsto \sf{}circumference \: of \: circle =2 \times  \dfrac{22}{7}  \times 3.74 \\

 \\  \\

 \leadsto \sf{}circumference \: of \: circle =2 \times  \dfrac{22}{7}  \times 3.74 \\

 \\  \\

 \leadsto \sf{}circumference \: of \: circle =\dfrac{22 \times 2 \times 3.74}{7}\\

 \\  \\

 \leadsto \sf{}circumference \: of \: circle =\dfrac{164.56}{7}\\

 \\

 \leadsto \underline{ \boxed{ \sf{}circumference \: of \: circle =23.5 \: cm}} \\

 \\

 \therefore \underline{\textsf{circumference \: of \: circle = \textbf{23.5 \: cm}(approx)}}

 \\  \\

know more:

 \\

 \textbf{Formulas of area :}

 \\

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

Attachments:
Similar questions