Math, asked by Ajaythakut3066, 1 year ago

If area of similar triangles abc and def be 64 sq cm and 121 sq cm and ef = 15.4 then bc equals to

Answers

Answered by Anonymous
4

\frak {\underline{\orange{Answer}}}

Area of ∆ ABC = 64 cm²

Area of ∆ DEF = 121 cm²

We know that :-

∆ ABC \sim ∆ DEF

We also know :-

 \sf \frac{ar(ABC)}{ar(DEF)}  =    {(\frac{AB}{DE} )}^{2}= {(\frac{BC}{EF} )}^{2}={(\frac{AC}{DF} )}^{2}

 \sf \frac{64}{121}  =  { (\frac{(BC)}{(15.4)}) }^{2}

 \sf \frac{BC}{15.4}  =  \sqrt{ \frac{64}{121} }

 \sf \frac{BC}{15.4}  =  \frac{8}{11}

 \sf BC =  \frac{8}{11}  \times 15.4

 \boxed{\purple{\sf{ BC = 11.2}}}

BC = 11.2 cm

Answered by mukeshambanii
0

\frak {\underline{\orange{Answer}}}

Answer

Area of ∆ ABC = 64 cm²

Area of ∆ DEF = 121 cm²

We know that :-

∆ ABC \sim∼ ∆ DEF

We also know :-

\sf \frac{ar(ABC)}{ar(DEF)} = {(\frac{AB}{DE} )}^{2}= {(\frac{BC}{EF} )}^{2}={(\frac{AC}{DF} )}^{2}

ar(DEF)

ar(ABC)

=(

DE

AB

)

2

=(

EF

BC

)

2

=(

DF

AC

)

2

\sf \frac{64}{121} = { (\frac{(BC)}{(15.4)}) }^{2}

121

64

=(

(15.4)

(BC)

)

2

\sf \frac{BC}{15.4} = \sqrt{ \frac{64}{121} }

15.4

BC

=

121

64

\sf \frac{BC}{15.4} = \frac{8}{11}

15.4

BC

=

11

8

\sf BC = \frac{8}{11} \times 15.4BC=

11

8

×15.4

\boxed{\purple{\sf{ BC = 11.2}}}

BC=11.2

BC = 11.2 cm

Similar questions