Math, asked by Babuprakhar656, 1 year ago

If area of the rhombus is 24 cm square and one of its diagonal us 4 cm find the perimeter of the rhombus

Answers

Answered by MitheshShankar
15
Area of rhombus is =  \frac{product of diagonals }{2}


24 =  \frac{4(bd)}{2}

24 = 2bd

12 = bd 

as the diagonals of a bisector bisect each other AO = OC = 2

and BO= OD = 6 

 (AB)^{2}=  (OB)^{2} + (OD)^{2}

 (AB)^{2}=  6^{2} + 2^{2}

AB =  \sqrt{40}

AB= 2 \sqrt{10}

as the sides are equal in rhombus i.e AB=BC=CD=DA 

the perimeter of a rhombus is 4 x sides 

4 ( 2 \sqrt{10} )

perimeter = 8\sqrt{10}
Answered by silentlover45
7

\large\underline\blue{Diagram:-}

\large\underline\pink{Given:-}

  • Area of the Rhombus is 24 cm²
  • And one of its diagonal is 4 cm.

\large\underline\pink{To find:-}

  • Find the perimeter of the Rhombus ....?

\large\underline\pink{Solutions:-}

  • Let the 1st diagonal be x cm.
  • Let the 2nd diagonal be 4 cm.

\: \: \: \: \:  \therefore \: \: Area \: \: of  \: \: Rhombus \: \: = \: \: \frac{1}{2} \: \times {d_1} \: \times \: {d_2}

\: \: \: \: \:  \leadsto \: \: {24} \: \: = \: \: \frac{1}{2} \: \times {x} \: \times \: {4}

\: \: \: \: \:  \leadsto \: \: {24} \: \times \: {2} \: \: = \: \: {x} \: \times \: {4}

\: \: \: \: \:  \leadsto \: \: {48} \: \: = \: \: {4x}

\: \: \: \: \:  \leadsto \: \: {x} \: \: = \: \: \frac{48}{4}

\: \: \: \: \:  \leadsto \: \: {x} \: \: = \: \: {12} \: cm

\: \: \: \: \: \: \: Now, \\ \therefore \: \: In \: \ \triangle \: AOB

\: \: \: \: \: \: \: \underline\red{ Using \: \: Pythagoras \: \: Theorem.}

\: \: \: \: \: \: \: \leadsto \: \: {AB}^{2} \: \: = \: \: {AO}^{2} \: + \: {OB}^{2}

\: \: \: \: \: \: \: \leadsto \: \: {AB}^{2} \: \: = \: \: {(6)}^{2} \: + \: {(2)}^{2}

\: \: \: \: \: \: \: \leadsto \: \: {AB}^{2} \: \: = \: \: {36} \: + \: {4}

\: \: \: \: \: \: \: \leadsto \: \: {AB}^{2} \: \: = \: \: {40}

\: \: \: \: \: \: \: \leadsto \: \: {AB} \: \: = \: \: {\sqrt{40}}

\: \: \: \: \: \: \: \leadsto \: \: {AB} \: \: = \: \: {2} \: \sqrt{10}

\: \: \: \: \: \: \: \therefore \: \: Perimeter \: \: of \: \: the \: \: Rhombus \: \: = \: \: {4} \: {(side)}

\: \: \: \: \: \: \: \leadsto \: \: {4} \: {({2} \: \sqrt{10})}

\: \: \: \: \: \: \: \leadsto \: \: {{8} \: \sqrt{10}} \: {cm}^{2}

\: \: \: \: \: \: \: Hence, \: \: Perimeter \: \: of \: \: the \: \: Rhombus \: \: is \: \: {{8} \: \sqrt{10}} \: {cm}^{2}.

__________________________________

Attachments:
Similar questions