Math, asked by nups18, 1 month ago

If area of triangle is 24 sq units with vertices (2,−6),(5,4) and (k,4). Then find the value of k. Solve using determinants.

Answers

Answered by XxMrZombiexX
84

Given

  • Area of triangle is 24 square units with vertices ( 2,-6), ( 5,4) and ( k, 4)

To find

  • The value of k

Formula

  • Solve using determinants method
  •  \tiny\sf \:  \: The \: area  \: of \:  the \:  triangle \:  is \:  given \:  by \:  \triangle = \frac{1}{2}  \begin{gathered}\left[\begin{array}{ccc}\sf x_{1}&  \sf \: y_{1}  &1 \\ \sf x_{2}&  \sf \: y_{2}  &1 \\ \sf x_{3}&  \sf \: y_{3}  &1\end{array}\right]\end{gathered}

Solution

Given that the area of the triangle is 24 square units and vertices are ( 2,-6), ( 5,4) and ( k, 4), we know the formula

\purple{\boxed{\tiny\sf \:  \: The \: area  \: of \:  the \:  triangle \:  is \:  given \:  by \:  \triangle = \frac{1}{2}  \begin{gathered}\left[\begin{array}{ccc}\sf x_{1}&  \sf \: y_{1}  &1 \\ \sf x_{2}&  \sf \: y_{2}  &1 \\ \sf x_{3}&  \sf \: y_{3}  &1\end{array}\right]\end{gathered}}}

Here,

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎Area of triangle is 24 square units

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎Since area is always positive,

‎ ‎ So triangle can have positive and negative value

Therefore,

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎ Triangle = ± 24 square units,

And also,

\begin{gathered}\frak{\;value }\begin{cases}\green{\sf x_1 = 2   \:  \: \: and \: \:  \:   y_1 = 6}\\\ \green{ \sf x_2 = 5 \:   \:  \: and  \:  \:  \: y_2 = 4}\\ \green{ \sf x_3 = k  \:  \:  \: and  \:  \: y_3 = 4 }\\\end{cases}\end{gathered}

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎ Putting value in formula we get,

 \sf \longmapsto \:  \: \pm24 = \frac{1}{2}  \begin{gathered}\left[\begin{array}{ccc}\sf 2& \sf - 6& \sf1 \\ 5&4&1 \\  \sf \: k&4&1\end{array}\right]\end{gathered}

 \\  \\ \longmapsto\sf \: \pm24 \bigg \lgroup2  \begin{gathered}\left |\begin{array}{ccc}\sf 4&  \sf \: 1  \\ \sf 4&  \sf \: 1\\ \end{array}\right |\end{gathered} - ( - 6)\begin{gathered}\left |\begin{array}{ccc}\sf 5&  \sf \: 1  \\ \sf k&  \sf \: 1\\ \end{array}\right |\end{gathered} + 1\begin{gathered}\left |\begin{array}{ccc}\sf 5&  \sf \: 4\\ \sf k&  \sf \: 4\\ \end{array}\right |\end{gathered} \bigg \rgroup

 \\  \\ \longmapsto\sf \: \pm24 =  \frac{1}{2} \bigg \lgroup2(4 - 4) + 6(5 - k) + 1(20 - 4k) \bigg \rgroup \\  \\   \\ \longmapsto\sf \: \pm24 =  \frac{1}{2}  \bigg \lgroup2(0) + 6(5 - k) + (20 - 4k)   \bigg \rgroup \\  \\  \\ \longmapsto\sf \: \pm24 =  \frac{1}{2} \bigg \lgroup(30 - 6k )+( 20  - 4k )\bigg \rgroup \\  \\  \\ \longmapsto\sf \: \pm24 =  \frac{1}{2} \bigg \lgroup(30 -  20) +( 6k - 4k )\bigg \rgroup \\  \\ \longmapsto\sf \: \pm24 =  \frac{1}{2} (50 - 10k) \\  \\  \\\longmapsto\sf \: \pm \frac{ 24 \times 2 }{1}=    (50 - 10k)\\  \\  \\ \longmapsto\sf \: \pm48 = (50 - 10k) \\  \\  \\  \bf \: so, \: 48 = 50 - 10k \:  \:  \: or - 48 = 50 - 10k

_________________________

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎Solving with positive sing

 \bf \: 48 = 50 - 10k \\  \\ \sf \:  \longmapsto48 = 50 - 10k \\  \\ \sf \:  \longmapsto \: 48 - 50 = 10k \\  \\ \sf \:  \longmapsto - 2 = 10k \\  \\ \sf \:  \longmapsto10k =  - 2 \\  \\  \sf \:  \longmapsto k = \cancel \frac{10}{ - 2}  \\  \\ \sf \:  \longmapsto \: k = -  5

_________________________

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎Solving with negative sing

 \bf \:  - 48 = (50 - 10k) \\  \\ \sf\longmapsto \:  - 48 = (50 - 10k) \\  \\  \sf \longmapsto - 48 - 50 =  - 10k \\  \\  \sf \longmapsto - 98 = -  10k \\  \\  \sf \longmapsto \: k =   \frac{  \cancel- 98}{ \cancel - 10}  \\  \\  \sf \longmapsto k=9.8

_________________________

Therefore

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎ ‎‎ ‎ ‎ ‎‎the value of k is - 5 and 9.8

Attachments:
Similar questions