Math, asked by ayushpandey98070, 11 months ago

If arg (z-1) = arg (z + 3i), find (x - 1): y where z= x + iy.

Answers

Answered by manasbanerjee360
0

Answer:

i think so.ot could be wrong

Attachments:
Answered by sanketj
1

z = x + iy

arg(z - 1) = arg(z + 3i)

arg (x + iy - 1) = arg(x + iy + 3i)

arg((x - 1) + iy) = arg(x + (y + 3)i)

 {tan}^{ - 1} ( \frac{y}{x - 1} ) =  {tan}^{ - 1} ( \frac{y + 3}{x} ) \:  \:  \:   ... \: arg(a + ib) =  {tan}^{ - 1} ( \frac{b}{a} ) \\  \\ taking \: tangents \: on \: both \: sides \: we \: get \\  \\  \frac{y}{x - 1}  =  \frac{y + 3}{x}  \\ xy = (y + 3)(x - 1) \\ xy = xy - y + 3x - 3 \\ xy - xy = 3(x - 1) - y \\ 3(x - 1) - y = 0 \\ 3(x - 1) = y \\  \frac{x - 1}{y}  =  \frac{1}{3}

Hence, (x - 1) : y = 1 : 3

Similar questions