Math, asked by SrishtiMotwani4968, 1 year ago

If arg(z- w/z-w^2)=0 then prove that Re. (z)=-1/2( w and w^2 are real cube root of unity. )

Answers

Answered by gadakhsanket
22
Hey mate,

◆ Proof-
Let ω and ω^2 be cube roots of unity.

For given condition,
arg[(z-ω)/(z-ω^2)] = 0
We can say, the number z is a real number.

That is
Re(z-ω) = Re(z-ω^2) = 0
Re(z) - Re(ω) = 0
Re(z) = Re(ω)

We know that ω = -1/2 + √3i/2, i.e. Re(ω) = -1/2
Putting this value, we get-
Re(z) = -1/2


Hope this is useful...
Answered by MaheswariS
20

Answer:


Step-by-step explanation:


concept:


If arg(z)=0 then Im(z)=0 where z=x+iy


Given:


arg(\frac{z-\omega}{z-{\omega}^2})=0


Then,

Im(\frac{z-\omega}{z-{\omega}^2})=0


Take z=x+iy,

\omega=\frac{-1}{2}+i\frac{\sqrt{3}}{2}\:{\omega}^2=\frac{-1}{2}-i\frac{\sqrt{3}}{2}


\frac{z-\omega}{z-{\omega}^2}

=\frac{x+iy+\frac{1}{2}+i\frac{\sqrt{3}}{2}}{x+iy+\frac{1}{2}-i\frac{\sqrt{3}}{2}}


=\frac{(x+\frac{1}{2})+i(y+\frac{\sqrt{3}}{2})}{(x+\frac{1}{2})+i(y-\frac{\sqrt{3}}{2})}


Im(\frac{z-\omega}{z-{\omega}^2})=0

implies

\frac{(x+\frac{1}{2})(y+\frac{\sqrt{3}}{2})-(x+\frac{1}{2})(y-\frac{\sqrt{3}}{2})}{(x+\frac{1}{2})^2+(y+\frac{\sqrt{3}}{2})^2}=0


(x+\frac{1}{2})[(y+\frac{\sqrt{3}}{2})-(y-\frac{\sqrt{3}}{2})]=0


(x+\frac{1}{2})[(y+\frac{\sqrt{3}}{2})-y+\frac{\sqrt{3}}{2})]=0


(x+\frac{1}{2})\sqrt{3}=0

x+\frac{1}{2}=0

x=-\frac{1}{2}

Re(z)=-\frac{1}{2}




Similar questions