Economy, asked by aryamarskole93, 8 months ago

. If arithmetic mean is 15 and median is 17 then what will be the value of mode.


Obtain Median. X 10 20 30 40 Frequency 2 4 10 4

Answers

Answered by rita661985000
0

..................................................

Answered by pulakmath007
28

SOLUTION

TO DETERMINE

  • Arithmetic mean is 15 and median is 17 then what will be the value of mode.

  • mean is 15 and median is 17 then what will be the value of mode.Obtain Median.

X 10 20 30 40 Frequency 2 4 10 4

X 10 20 30 40 Frequency 2 4 10 4

EVALUATION

CALCULATION OF MODE

For moderately asymmetrical distribution there is an approximate relation between them and it is given by

Mean - Mode = 3 ( Mean - Median)

That is,

 \sf{}Mode + 2 × Mean = 3 × Median

 \implies\sf{}Mode= 3 × Median -  2 × Mean

 \implies\sf{}Mode= 3 ×17 -  2 × 15

 \implies\sf{}Mode= 51 - 30

 \implies\sf{}Mode= 21

Hence Mode is 21

CALCULATION FOR MEDIAN

 \sf{ x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  f \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:cumulative  \: frequny\:( < )  \: }

 \sf{ 10 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: 2\: }

 \sf{ 20 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 4 \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: 6  \:  \: \: }

 \sf{ 30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 10 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: 16}

 \sf{ 40 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: 20}

Here total values of sample values

= N = 20 which is even

So there are two middle terms 10 th term and 11 th term

So

 \sf{ \: Median = }

 \displaystyle \sf{ =  \frac{X_{10} +X_{11} }{2} }

 \displaystyle \sf{ =  \frac{30 + 30 }{2} }

 =  \sf  {30}

Hence Median = 30

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Among 21 components 3 are defective. what is the probability that a component selected at random is not defective

https://brainly.in/question/22719974

Similar questions