Math, asked by ZzyetozWolFF, 4 months ago

If asin² (x) + bcos² (y) = c, bsin² (y) + acos² (y) = d and atan (x) = btan (y)
Then prove that : a²/b² = (d - a) (c - a)/(b - c) (b - d)

solve by eliminating x and y.​

Answers

Answered by Ataraxia
227

Correct question :-

If asin² (x) + bcos² (x) = c, bsin² (y) + acos² (y) = d and atan (x) = btan (y). Then prove that : a²/b² = (d - a) (c - a)/(b - c) (b - d).

Given :-

\sf a sin^2x+bcos^2x=c

\sf bsin^2y+acos^2y=d

\sf atan \ x= b tan \ y

To Prove :-

\sf \dfrac{a^2}{b^2}= \dfrac{(d-a)(c-a)}{(b-c)(b-d)}

Solution :-

\sf asin^2x+bcos^2x=c

\bf\dag \ sin^2x= 1- cos^2x

: \implies \sf \ a(1-cos^2x)+bcos^2x=c

: \implies \sf \  a-acos^2x+bcos^2x=c

: \implies \sf \ -acos^2x+bcos^2x= c-a

: \implies \sf \  cos^2x(b-a)= c-a

: \implies \sf \  cos^2x= \dfrac{c-a}{b-a} \ \ \ \ \ \ \  -(1)

\bf\dag \ cos^2x=1-sin^2x

: \implies \sf \ asin^2x+b(1-sin^2x) = c

: \implies \sf \  asin^2x+b-bsin^2x=c

: \implies \sf \  asin^2x-bsin^2x= c-b

: \implies \sf \  bsin^2x-asin^2x= b-c

: \implies \sf \  sin^2x(b-a) =b-c

: \implies \sf \  sin^2x= \dfrac{b-c}{b-a} \ \ \ \ \ \ \ \ \ -(2)

Dividing eq(2) by eq(1) we get,

: \implies \sf \  tan^2x= \dfrac{b-c}{c-a}

\sf bsin^2y+acos^2y = d

\bf\dag \ sin^2y= 1-cos^2y

: \implies \sf \ b(1-cos^2y)+acos^2y=d

: \implies \sf \ b-bcos^2y+acos^2y = d

: \implies \sf \  - bcos^2y+acos^2y=d-b

: \implies \sf \  bcos^2y-acos^2y=b-d

: \implies \sf \  cos^2y(b-a)=b-d

: \implies \sf \  cos^2y = \dfrac{b-d}{b-a} \ \ \ \ \ \ \ \ \ \ \ -(3)

\bf \dag \ cos^2y = 1-sin^2y

: \implies \sf \ bsin^2y+a(1-sin^2y) = d

: \implies \sf \  bsin^2y+a-asin^2y=d

: \implies \sf \  b sin^2y-asin^2y = d-a

: \implies \sf \  sin^2y(b-a)=d-a

: \implies \sf \  sin^2y = \dfrac{d-a}{b-a}  \ \ \ \ \ \ \ \ -(4)

Dividing eq(4) by eq(3) we get,

: \implies \sf \  tan^2y = \dfrac{d-a}{b-d}

Given that,

a tanx = b tany

: \implies \sf \  \dfrac{a}{b} = \dfrac{tany}{tanx}

By squaring both sides we get,

: \implies \sf \ \dfrac{a^2}{b^2}= \dfrac{tan^2y}{tan^2x}

Substituting the values of tan²x and tan²y,

: \implies \sf \  \dfrac{a^2}{b^2} = \dfrac{(d-a)}{(d-b)} \times \dfrac{(c-a)}{(b-c)}

: \implies \sf \  \dfrac{a^2}{b^2}=\dfrac{(d-a)(c-a)}{(b-c)(b-d)}

Hence proved.


TheValkyrie: Fantastic!
ZzyetozWolFF: Awesomeeeeeeeee! Thanks a lot! ❤
mddilshad11ab: Great¶
TheFairyTale: Well explained! :p
MystícPhoeníx: Perfect !
Anonymous: Ãwēsømê !
Ataraxia: Thanks a lot!
Similar questions