If asin² (x) + bcos² (y) = c, bsin² (y) + acos² (y) = d and atan (x) = btan (y)
Then prove that : a²/b² = (d - a) (c - a)/(b - c) (b - d)
solve by eliminating x and y.
Answers
Answered by
227
Correct question :-
If asin² (x) + bcos² (x) = c, bsin² (y) + acos² (y) = d and atan (x) = btan (y). Then prove that : a²/b² = (d - a) (c - a)/(b - c) (b - d).
Given :-
To Prove :-
Solution :-
Dividing eq(2) by eq(1) we get,
Dividing eq(4) by eq(3) we get,
Given that,
a tanx = b tany
By squaring both sides we get,
Substituting the values of tan²x and tan²y,
Hence proved.
TheValkyrie:
Fantastic!
Similar questions