If aSinA + bCosA = c
then prove that
aCosA - bSinA = √(a² + b² - c²)
Answers
Answered by
1
We have, asinθ+bcosθ=c
On squaring both sides, we get
(asinθ+bcosθ)2=c2
(a sin θ)2 + (b cos θ)2 + 2(a sin θ) (b cos θ) = c2
⇒ a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ = c2
⇒ a2(1 – cos2 θ) + b2 (1 – sin2 θ) + 2 ab sin θ cos θ = c2 [∵sin2θ+cos2θ=1]
⇒ a2 – a2 cos2 θ + b2 – b2 sin2 θ + 2ab sin θ cos θ = c2
⇒ –a2 cos2 θ – b2 sin2 θ + 2ab sin θ cos θ = c2 – a2 – b2
Taking Negative common,
⇒ a2 cos2 θ + b2 sin2 θ – 2ab sin θ cos θ = a2 + b2 – c2
⇒ (a cos θ)2 + (b sin θ)2 – 2(a cos θ) (b sin θ) = a2 + b2 – c2
⇒ (acosθ−bsinθ)2=a2+b2−c2
⇒acosθ−bsinθ = ±a2+b2−c2−−−−−−−−−−√
Hence proved, acosθ−bsinθ = a2+b2−c2−−
Answered by
1
Answer:
Hey!! How are you??
Please mark me as brainliest
Similar questions