if asintheta+bcostheta=c & acosectheta+bsectheta=c then prove that sin2theta=2ab/c^2-a^2-b^2
Answers
Answered by
0
Answer:
ANSWER
Let θ be an angle such that
... a cos θ + b sin θ = c ............. (1)
Squaring both sides,
... a² cos² θ + b² sin² θ +2ab sin θ cos θ = c²
∴ a² ( 1 - sin² θ ) + b² ( 1 - cos² θ ) +2ab sin θ cos θ = c²
∴ a² - a² sin² θ + b² - b² cos² θ +2ab sin θ cos θ = c²
∴ a² + b² - c² = a² sin² θ + b² cos² θ - 2ab sin θ cos θ
∴ ( √(a²+b²-c²) )² = ( a sin θ - b cos θ )²
∴ a sin θ - b cos θ = ± √(a²+b²-c²)
Hence, Proved
Step-by-step explanation:
mark me as brainlist please
follow me as I will follow you back
give thanks❤❤❤❤❤❤
Similar questions