Math, asked by narayanaraopkl3136, 1 year ago

If asinx = bcosx = 2ctanx/(1-tan^2 x), then prove that (a^2 - b^2 )^2 = 4c^2 (a^2 + b^2 ).

Answers

Answered by isyllus
38

Given: a\sin x=b\cos x=\dfrac{2c\tan x}{1-\tan^2x}

To prove: (a^2-b^2)^2=4c^2(a^2+b^2)^2

a\sin x=b\cos x

\dfrac{a}{b}=\dfrac{\cos x}{\sin x}

Taking square both sides

\dfrac{a^2}{b^2}=\dfrac{\cos^2 x}{\sin^2 x}

Apply Componendo and dividendo

\dfrac{a^2+b^2}{a^2-b^2}=\dfrac{\cos^2x+\sin^2 x}{\cos^2x-\sin^2 x}

\dfrac{a^2+b^2}{a^2-b^2}=\dfrac{1}{\cos2x}

\because \cos^2x+\sin^2 x=1\text{ and }\cos^2x-\sin^2 x=\cos 2x

Taking square both sides

\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)^{2}=\left(\frac{1}{\cos2x}\right)^{2}

\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)^{2}=\left(\frac{\sec^4x\cdot b^2\cos^2x}{4c^2\tan^2x}\right)

\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)^{2}=\dfrac{a^2+b^2}{4c^2}

Cross multiply

(a^2-b^2)^2=4c^2(a^2+b^2)

hence proved

Answered by snehasishdas66
1

Answer:

Given: a\sin x=b\cos x=\dfrac{2c\tan x}{1-\tan^2x}asinx=bcosx=

1−tan

2

x

2ctanx

To prove: (a^2-b^2)^2=4c^2(a^2+b^2)^2(a

2

−b

2

)

2

=4c

2

(a

2

+b

2

)

2

a\sin x=b\cos xasinx=bcosx

\dfrac{a}{b}=\dfrac{\cos x}{\sin x}

b

a

=

sinx

cosx

Taking square both sides

\dfrac{a^2}{b^2}=\dfrac{\cos^2 x}{\sin^2 x}

b

2

a

2

=

sin

2

x

cos

2

x

Apply Componendo and dividendo

\dfrac{a^2+b^2}{a^2-b^2}=\dfrac{\cos^2x+\sin^2 x}{\cos^2x-\sin^2 x}

a

2

−b

2

a

2

+b

2

=

cos

2

x−sin

2

x

cos

2

x+sin

2

x

\dfrac{a^2+b^2}{a^2-b^2}=\dfrac{1}{\cos2x}

a

2

−b

2

a

2

+b

2

=

cos2x

1

\because \cos^2x+\sin^2 x=1\text{ and }\cos^2x-\sin^2 x=\cos 2x∵cos

2

x+sin

2

x=1 and cos

2

x−sin

2

x=cos2x

Taking square both sides

\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)^{2}=\left(\frac{1}{\cos2x}\right)^{2}(

a

2

−b

2

a

2

+b

2

)

2

=(

cos2x

1

)

2

\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)^{2}=\left(\frac{\sec^4x\cdot b^2\cos^2x}{4c^2\tan^2x}\right)(

a

2

−b

2

a

2

+b

2

)

2

=(

4c

2

tan

2

x

sec

4

x⋅b

2

cos

2

x

)

\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)^{2}=\dfrac{a^2+b^2}{4c^2}(

a

2

−b

2

a

2

+b

2

)

2

=

4c

2

a

2

+b

2

Cross multiply

(a^2-b^2)^2=4c^2(a^2+b^2)(a

2

−b

2

)

2

=4c

2

(a

2

+b

2

)

hence proved

Step-by-step explanation:

mark me as brainlist

Similar questions