if asquare + bsquare +csquare =20 and a+b+c=0,find ab+bc+ca
Answers
Answered by
23
Answer:
Value of (ab + bc + ca ) is (-10)
Given
- a² + b² + c² = 20
- ( a + b + c ) = 0
To Find:
- ab + bc + ca
Identity:
( a + b + c )² = a² + b² + c² + 2(ab + bc + ca )
Substituting value of ( a + b + c ) and ( a² + b² + c² )
➞ ( 0 )² = 20 + 2(ab + bc + ca )
➞ 0 = 20 + 2(ab + bc + ca )
➞ -20 = 2(ab + bc + ca )
➞ -20/2 = (ab + bc + ca )
➞ -10 = (ab + bc + ca )
Value of (ab + bc + ca ) is (-10)
Verification:
➞ (0)² = 20 + 2 ( -10 )
➞ 0 = 20 + ( -20 )
➞ 0 = 0
LHS = RHS
Verified.
Answered by
9
( a+ b + c) 2 = a2 + b2 + c2 + 2
( ab + bc + ac )
ab + bc + ac
= -20 / 2
= -10
Similar questions